K30 monthly meeting: intro

Raymond Wang, M.D.
PGY-6 fellow, biochemical genetics
Cedars-Sinai Medical Center
Clinical background

- B.S., biological sciences, Stanford University
- M.D., UCLA School of Medicine
- Internship, pediatrics, Cedars-Sinai Medical Center (CSMC)
- Residency, pediatrics and general genetics, CSMC
- Research fellow, biochemical genetics, CSMC
Why genetics?

- Not just the study of the very rare
- Newborn screening data indicating that some genetic disorders are more common than previously indicated
- Study of the “extreme outliers” give insight into pathogenesis of more common diseases
 - rMED, COL9, and osteoarthritis
 - OI, COL1, and osteoporosis
 - AIDS resistance, CCR9, and HIV infection
- Need for translational research
 - Just because it’s rare doesn’t mean there is no need to develop and test treatments
Research background

- Basic science
 - *in vitro* models of protein (co)localization
 - analysis of anaphase checkpoint proteins
 - Genome-wide linkage analysis

- Clinical science
 - Fabry disease
 - Natural history description
 - Oral chaperone clinical trial
Fabry Disease Background

- **Inheritance**: “X-linked recessive disorder that affects males; females unaffected”

- **Etiology**: deficiency of _-galactosidase

- **Function**: degradation of glycosphingolipids

- **Pathophysiology**: glycosphingolipid accumulation in tissues, especially the vascular endothelium

GL₃ / globotriaosylceramide

Lactosylceramide

_-galactosidase
Clinical Manifestations of Fabry Disease

- **CNS / PNS (Cognitive function preserved)**
 - Stroke
 - Acroparesthesias ("Burning sensation of the hands and feet")
 - Anhidrosis / hypohidrosis with subsequent heat intolerance
 - Decreased vibration sense

- **Pulmonary**
 - Small-airway infiltration
 - Abnormal gas exchange

- **Cardiac**
 - Microvascular myocardial ischemia
 - Conduction abnormalities
 - Valvular insufficiency
 - Concentric, non-obstructive left ventricular hypertrophy

- **Renal**
 - Proteinuria / microalbuminuria
 - Progressive loss of GFR → renal failure

From Warnock, 2005
From Seino, 2005
From Whybra, 2001
Why study Fabry disease?

- It’s more common than previously indicated
 - Published population freq ~ 1:30,000
 - Newborn screening freq ~ 1:3,300

- To gain insight into disease pathogenesis
 - Stroke, myocardial ischemia, and peripheral neuropathy are common (esp DM)

- To find better treatment
 - “Enzyme replacement therapy” with IV recombinant α-galactosidase FDA-approved in 2004
 - Slows progression of GFR loss
 - ERT does not adequately treat or reduce stroke risk, peripheral neuropathy, or cardiomyopathy
Fellowship research aims

- To further characterize the natural history and response to therapy of Fabry disease in females
 - Retrospective chart review has been conducted
 - Results compiled and analyzed
 - Manuscript written and accepted for publication

- To evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of an oral medication, AT1001, in patients with selected missense mutations in \(-\text{Gal A}
 - Prospective, open-label, phase I/II clinical trial
 - Enrollment ongoing
Any questions? 😊

Disclosures:

- Fellowship funded by the American College of Medical Genetics Foundation / Genzyme Corporation Fellowship in Biochemical Genetics
- Genzyme Corporation had no role in the conception, design, execution, or publication of the results of this project
- Own no shares of the Genzyme corporation but am a private shareholder of Biomarin pharmaceuticals