Innovative Multimodal Imaging Techniques in Brain Tumor Clinical Trials

Benjamin M. Ellingson, Ph.D.
Assistant Professor of Radiology, Biomedical Physics, and Bioengineering
Brain Tumor Imaging Laboratory (BTIL)
Dept. of Radiological Sciences
David Geffen School of Medicine at UCLA

CTSI: Neuroimaging: A Short Course on Modern Imaging Modalities in Clinical Invest.
12 April 2013
Basics of Brain Tumor Biology
Brain Tumor Biology

• Mutations can cause protein structure alterations, resulting in a cascade of molecular changes (signaling)

• These can cause further issues and downstream effects
 • Uncontrolled Proliferation
 • Metastases
 • Metabolic Dysfunction
• Cancer arises from normal cells

• Benign
 • Non-cancerous tumor. Slow growing.
 • Can transform to a malignant tumor

• Malignant
 • Cancerous.
 • Invades and destroys nearby tissue and infiltrates/metastasizes
Clonal Genetic Model of Cancer

Normal → Mutation → Benign Tumour → Primary Cancer

ONC/ TSG

Drug resistance

Genetic plasticity

Metastasis

Gene

Copyright © 2006 Nature Publishing Group
Nature Reviews | Genetics

Fienberg, Nature Genetics, 2006
Brain Tumor Biology

• WHO = World Health Organization
 • **Grade:**
 • How abnormal cells look under the microscope
 • How quickly they are likely to grow or spread

• I-IV from least to most malignant/differentiated
 • I: “Well differentiated” (low Grade)
 • II: “Moderately differentiated” (Intermediate Grade)
 • III: “Poorly differentiated” (High Grade / Malignant)
 • IV: “Undifferentiated” (High Grade / Malignant)
Brain Cancer - Gliomas

- Brain Cancer *Does Not Metastasize* (No Staging, Only Grading)
- Neuroblastomas & Epidemoma
- Oligodendrogliomas
 - Oligodendroglioma (WHO II)
 - Anaplastic Oligodendroglioma (WHO III)
- Astrocytomas
 - Astrocytoma (WHO II)
 - Anaplastic Astrocytoma (WHO III)
- Mixed Gliomas
 - Astrocytoma and Oligodendroglioma
- Glioblastoma (GBM) - WHO IV
Brain Cancer Incidence

CBTRUS Statistical Report: NPCR and SEER Data from 2004-2008

Glioma Malignant, NOS 7.1%
Ependymoma 5.8%
Oligodendroglioma 6.4%
Pilocytic Astrocytoma 5.2%
Protoplasmic and Fibrillary Astrocytoma 1.8%
Anaplastic Astrocytoma 6.7%
All Other Astrocytoma 8.8%
All Other Glioma 4.3%
Astrocytomas and glioblastomas account for 76% of all gliomas*
Glioblastoma 53.9%

*ICD-O-3 codes = 9380-9384,9391-9460,9480

Central Brain Tumor Registry United States, 2012
Cancer Phenotypes

• Key Phenotypes/Characteristics of Glioblastoma
 • Uncontrolled Proliferation (positive feedback)
Cancer Phenotypes

- Key Phenotypes/Characteristics of Glioblastoma
 - Uncontrolled Proliferation (positive feedback)
 - Hypoxia (HIF-1α)
 - Invasion - Migration
• Key Phenotypes/Characteristics of Glioblastoma
 • Uncontrolled Proliferation (positive feedback)
 • Hypoxia (HIF-1α)
 • Invasion - Migration
 • Vascular Proliferation - Angiogenesis
Cancer Phenotypes

Key Phenotypes/Characteristics of Glioblastoma

- Uncontrolled Proliferation (positive feedback)
- Hypoxia (HIF-1α)
- Invasion - Migration
- Vascular Proliferation - Angiogenesis
- Excretion of Growth Factors and Signaling Molecules
Cancer Phenotypes

• Key Phenotypes/Characteristics of Glioblastoma
 • Uncontrolled Proliferation (positive feedback)
 • Hypoxia (HIF-1α)
 • Invasion - Migration
 • Vascular Proliferation - Angiogenesis
 • Excretion of Growth Factors and Signaling Molecules

• GOAL: Detect & Quantify these Phenotypes/Behaviors
Biomarkers

- Definition of Biomarkers
 - “A characteristic that is **objectively measured** and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic **responses to a therapeutic intervention**”
• Definition of Biomarkers

- “A characteristic that is **objectively measured** and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention”
• Surgical Resection

 • Extent of Resection (biopsy vs. resection) affects OS
 • High grade gliomas: GTR 2-yr survival 19%, STR = 0% (Ammirati, Neurosurg, 1987)
 • OS GTR = 13 mo vs. STR = 8.8 mo (Lacroix, J Neurosurg, 2001)
 • OS GTR = 14 mo vs. STR = 11 mo (Sanai, Neurosurg, 2008; Fadul, Neurology, 1988)
 • High Grade Gliomas cannot be cured with surgery
 • Goal is to diagnose, relieve mass effect, and achieve GTR (Ryken, J Neuroonc, 2008)
• Radiation Therapy

 • External Beam Radiation Therapy (XRT) significantly prolongs survival
 • Surgery Alone ~ 3-4 mo OS; Surgery + RT ~ 7-12 mo OS (Buatti, J Neuroonc, 2008; Stupp, N Eng J Med, 2005; Walker, J Neurosurg, 1978)
 • Dose 4500 cGy ~ 13 week OS; 6000 cGy ~ 42 week OS
 • Administered 5 days per week in 1.8-2.0 Gy Fractions

 • Interstitial Brachytherapy
 • Implantation of radioactive seeds
 • Limited value and rarely used -- results in substantial radiation necrosis

• Experimental RT

 • Proton beam therapy; Neutron Capture Therapy
 • Radiosensizers
• Chemotherapy (Anti-neoplastic Agents)

 • Adjuvant chemo >6-10% increase in 1 year survival rates (Fine, *Cancer*, 1993; Stewart, *Lancet*, 2002)

• Temozolomide (TMZ) -- * Current standard of care

 • Orally active alkylating agent approved by FDA in 2005
 • RT+TMZ followed by adj TMZ significantly improves OS (Stupp, *N Eng J Med*, 2005)
 • PFS 6.9 mo vs 5 mo; OS 14.6 mo vs. 12.1 mo; 2 yr survival rate 26% vs 10%
Current Therapies for Brain Tumors

• Chemotherapy (Anti-neoplastic Agents)
 • Nitrosoureas: (BCNU; carmustine & carmustine wafers [Gliodel])
 • Approved by FDA in 2002
 • Increased survival 13.8 mo vs. 11.6 mo (Westphal, Acta Neurochir, 2006)
 • Lots of toxicity & other issues (CSF leaks, increased ICP)
• Other Chemotherapy (Anti-neoplastic Agents)
 • Lomustine (CCNU)
 • Alkylating agent
 • 5-FU
 • Transformed into different cytotoxic metabolites, resulting an apoptosis
 • Vorinostat
 • Histone deacetylase inhibitor
 • Irinotecan (Camptosar)
 • Topoisomerase inhibitor -- prevents DNA from unwinding
 • Topotecan (Hycamtin)
 • Topoisomerase inhibitor
 • Vincristine (Oncovin)
 • Leurocristine (VCR) - vinca alkaloid -- mitotic inhibitor
 • Temsirolimus (Torisel)
 • mTOR inhibitor - blocks growth and division
Current Therapies for Brain Tumors

• Anti-Angiogenic Agents (Reduces Blood Vessels)
 • Bevacizumab (Avastin) -- VEGF
 • Humanized monoclonal antibody that inhibits VEGF-A.
 • FDA Approval for recurrent GBM in May 2009
 • Increases 6 month PFS (Vrendenburgh, Clin Cancer Res, 2007; J Clin Onc, 2007)
 • Cediranib (AZD2171)
 • Tyrosine kinase inhibitor, VEGF inhibitor
 • Sorafenib
 • Tyrosine kinase inhibitor, VEGF inhibitor
 • Cetuximab
 • EGFR inhibitor
 • Erlotinib
 • Tyrosine kinase inhibitor, EGFR
Current Therapies for Brain Tumors

- **Immunotherapy**
 - **Dendritic Cell Vaccine**
 - Creates a vaccine from patient-specific tumor cell proteins + dendritic cells from the patient's blood. Dendritic cells mediate T-cell immune response to the remaining tumor
 - **Rindopepimut (CDX-110)**
 - Immunotherapy that targets tumor specific oncogene EGFRvIII
 - **Retroviral Vectors (Toca511)**
 - Retrovirus that delivers genetic instructions to produce cytosine deaminase inside cancer cells. CD then converts 5-FC (an antifungal) to 5-FU (cytotoxic)
 - **Alloreactive Cytotoxic T Lymphocytes (AlloCTL)**
Current Therapies for Brain Tumors

Phenotype/Clinical Characteristic

Imaging

Outcomes

UT Houston Medical Center

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2013
• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
 • Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
• Positron Emission Tomography (PET)
 • 18F-FDG PET
 • Glucose Metabolism
 • 18F-FLT PET
 • DNA Synthesis / Proliferation
 • 18F-FDOPA PET
 • Amino Acid Uptake/Transport/Metabolism
• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
 • Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
Standard MRI - T2/FLAIR/Relaxometry

Mobile H₂O

Immobile H₂O

Long T2 (Bright)

Short T2 (Dark)
Standard MRI - T2/FLAIR/Relaxometry

T2-Weighted Edema
Standard MRI - T2/FLAIR/Relaxometry

T2-Weighted

Infiltrative Tumor
Standard MRI - T2/FLAIR/Relaxometry

T2-Weighted
FLAIR
Standard MRI - T2/FLAIR/Relaxometry

T2 FLAIR Double IR
Advanced Neuroimaging Protocol for Clinical Trials

• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
 • Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
Standard MRI - T2/FLAIR/Relaxometry

TE = 10ms TE = 100 ms TE = 200 ms

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2013
Differential Quantitative T2 Mapping (DQT2)

Ellingson, J Neuroonc, 2012
Differential Quantitative T2 Mapping (DQT2)

Pre-Bev Post-Bev Pre-Bev Post-Bev
Differential Quantitative T2 Mapping (DQT2)
• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
 • Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
Diffusion MRI

Ellingson et al., Concepts in MR, 2008
Diffusion MRI is a Cellularity Biomarker

Ellingson & Cohen-Adad, Chpt. 3.1: Diffusion-Weighted Imaging in
Diffusion MRI is a Cellularity Biomarker

ADC Map

Edema

Necrosis

Viable Tumor (Dark)
Diffusion MRI is a Cellularity Biomarker

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2013
Diffusion MRI is a Cellularity Biomarker

ADC Before RT

ADC After RT
Diffusion MRI is a Cellularity Biomarker

Functional Diffusion Mapping (fDMs)
Diffusion MRI is a Cellularity Biomarker

Pre-Tx FLAIR
Post-Tx FLAIR
Pre-Tx T1+C
Post-Tx T1+C
fDM

PFS = 247 Days
OS = 247 Days

PFS = 258 Days
OS = 662 Days

PFS = 438 Days
OS = 1613 Days

Ellingson, Neuro Onc, 2012
Diffusion MRI is a Cellularity Biomarker

Ellingson, Neuro Onc, 2012
Cell Invasion, Motility, and Proliferation Level Estimate (CIMPLE) Maps

\[
\frac{d}{dt} \text{ADC}(t) = \rho \cdot \text{ADC}(t) + D \nabla^2 \text{ADC}(t)
\]

Proliferation

Invasion
Cell Invasion, Motility, and Proliferation Level Estimate (CIMPLE) Maps

T1+C

Proliferation

Cell Proliferation

[1/yr]

0

10

Ellingson, J Neuroonc, 2012
• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
• Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
• Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
• Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
Brain Tumor Contrast Enhancement

Normal Vasculature

Neovasculature
Serial T1-Weighted Images
Dynamic Contrast Enhanced (DCE)-MRI

\[\text{Gd Bolus} \rightarrow \text{Plasma} \quad C_p(t) \quad \xrightarrow{K_{\text{trans}}} \quad \text{EC Space} \quad C_e(t) \quad \xleftarrow{k_{ep}} \quad \text{Kidneys} \]

Signal Intensity vs. Time

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2013
Dynamic Contrast Enhanced (DCE)-MRI

\[S \propto \frac{\sin \theta (1 - e^{-TR/T1})}{(1 - \cos \theta \cdot e^{-TR/T1})} \]
Dynamic Contrast Enhanced (DCE)-MRI

\[K_{\text{trans}} = 0 \text{ min}^{-1} \]

\[K_{\text{trans}} = 0.048 \text{ min}^{-1} \]
Dynamic Contrast Enhanced (DCE)-MRI

Gd Bolus

Plasma $C_p(t)$

K_{trans}

EC Space $C_e(t)$

k_{ep}

Kidneys

K_{trans} [min$^{-1}$]

0

0.05
Advanced Neuroimaging Protocol for Clinical Trials

• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
 • Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
Dynamic Susceptibility Contrast (DSC)-MRI

Standard DSC Method:

ΔR^2 or ΔR

CBV

Signal

Time (sec)

Time (sec)

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2013
Dynamic Susceptibility Contrast (DSC)-MRI
Dynamic Susceptibility Contrast (DSC)-MRI

![Dynamic Susceptibility Contrast (DSC)-MRI Image]

- **Time**
- **Signal Intensity**

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2013
Dynamic Susceptibility Contrast (DSC)-MRI

T_1+C

$rCBV$
Dynamic Susceptibility Contrast (DSC)-MRI

\[T_1 + C \]

\[rCBV \]
Dynamic Susceptibility Contrast (DSC)-MRI

$T1+C$

$rCBV$
• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
• Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
Standard MRI - Contrast Enhancement

Pre-Contrast

Post-Contrast

Pre-contrast images show the baseline state of a brain scan without any contrast enhancement. Post-contrast images illustrate the enhanced visibility of certain areas after administering contrast material, which can help in identifying lesions or abnormalities more clearly.

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2013
Standard MRI - Contrast Enhancement

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2013
Standard MRI - Contrast Enhancement

Post-Bevacizumab Volume

CE-ΔT1w, HR = 0.46; P < 0.001***
Conventional, HR = 0.51; P = 0.002**

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2013
Positron Emission Tomography (PET)
Positron Emission Tomography (PET)

T2-Weighted MRI

18F-FDOPA PET (Dopamine)
Positron Emission Tomography (PET) Parametric Response Maps
Positron Emission Tomography (PET) Parametric Response Maps

Pre-Treatment

First Post-Treatment Follow-Up

Post-Contrast T1-Weighted

18F-FDG PET

18F-FDG PET PRM

Ellingson, PET Clinics, 2013 (In Press)
Positron Emission Tomography (PET) Parametric Response Maps

T2-Weighted

18F-FDOPA PET

18F-FDOPA PET PRM

Ellingson, PET Clinics, 2013 (In Press)
Positron Emission Tomography (PET) Parametric Response Maps

T2-Weighted

18F-FLT PET

18F-FLT PET PRM

Ellingson, PET Clinics, 2013 (In Press)
Advanced Neuroimaging Protocol for Neuro-Oncology

- **Magnetic Resonance Imaging (MRI)**
 - T2/FLAIR
 - Edema & Infiltrating tumor
 - T2 Relaxometry
 - Edema / Density
 - Diffusion MRI
 - Cellularity, Proliferation, Invasion
 - Dynamic Contrast-Enhanced (DCE) MRI
 - Vascular Permeability
 - Dynamic Susceptibility-Contrast (DSC) MRI
 - Blood Volume, Blood Flow
 - Contrast-Enhanced T1-Weighted
 - Abnormal Vasculature & Proliferative Tumor

- **Positron Emission Tomography (PET)**
 - 18F-FDG PET
 - Glucose Metabolism
 - 18F-FLT PET
 - DNA Synthesis / Proliferation
 - 18F-FDOPA PET
 - Amino Acid Uptake/Transport/Metabolism
Challenges in a Multi-Center Clinical Trial

• Image Standardization
Challenges in a Multi-Center Clinical Trial

• Image Standardization

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2013
Challenges in a Multi-Center Clinical Trial

• Quality Control
Challenges in a Multi-Center Clinical Trial

- Scanner Variability

![Graphs showing ADC values for CSF and NAWM across different MRI scanners.](image-url)