<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/3/2013</td>
<td>Pharmacokinetics and Pharmacodynamics</td>
<td>Elliot Landaw, MD, PhD</td>
</tr>
<tr>
<td>4/10/2013</td>
<td>Clinical Pharmacology of Narcotics</td>
<td>Michael Ferrante, MD</td>
</tr>
<tr>
<td>4/17/2013</td>
<td>Biomarkers for Early Detection, and Molecular Targeting of Putative Markers, for Ovarian Cancers</td>
<td>Robin Farias-Eisner, MD, PhD</td>
</tr>
<tr>
<td>4/24/2013</td>
<td>Studying Tissue Pharmacokinetics by PET Assessment of Tumor Response to Chemotherapy</td>
<td>Caius Radu, MD</td>
</tr>
<tr>
<td>5/1/2013</td>
<td>Essentials of Geriatric Psychopharmacology</td>
<td>Helen Lavretsky, MD</td>
</tr>
<tr>
<td>5/8/2013</td>
<td>Changes in Pharmacokinetics and Pharmacodynamics During Pregnancy</td>
<td>Carla Janzen, MD, PhD</td>
</tr>
<tr>
<td>5/15/2013</td>
<td>Pharmacokinetics and Pharmacodynamics in Renal Failure</td>
<td>Anjay Rastogi, MD</td>
</tr>
<tr>
<td>5/22/2013</td>
<td>Gene Therapy Approaches to Cancer Treatment</td>
<td>Richard Koya, MD</td>
</tr>
<tr>
<td>5/29/2013</td>
<td>Drug Therapy in Newborns: Peri- and Postnatal HIV treatment</td>
<td>Yvonne Bryson, MD</td>
</tr>
</tbody>
</table>
Pharmacokinetics & Pharmacodynamics

- **Basic Concepts**
- **Issues in Pharmacokinetics (PK)**
 - Clearance
 - Half-lives and Residence Times
 - Distribution Volumes
 - Absorption & Bioavailability Measures
- **Pharmacodynamics (PD)**
 - Steady State Models
 - Linking of PK & PD
Some Resources

- **Texts**
 - M Rowland & RN Tozer *Clinical Pharmacokinetics* 4th ed., Lippincott Williams & Wilkins 2011

- **Web sites**
 - www.cc.nih.gov/training/training/principles.html
 - www.pharmpk.com/ (links to PK/PD resources)

- **Journals:**
 - *Clinical Pharmacology & Therapeutics* (www.ascpt.org)
 - *J. Pharmacokinetics & Pharmacodynamics*
Basic - Definitions

- Pharmacokinetics (PK) – quantitative analysis of the kinetics (time course) and steady state (SS) relationships of drug

 "What the body does to the drug"

 "ADME"

 - Absorption
 - Distribution
 - Metabolism
 - Excretion

 Elimination
Basic - Definitions

- Pharmacodynamics (PD) – quantitative analysis of relation of drug concentration at an effect site (C_e) to drug effect (E).

 “What the drug does to the body”

- Understand Dose-Effect relationships

- SS: $C_e \propto$ measured plasma concentration

- Non-SS: may need to use PK to infer C_e
PATIENT CHARACTERISTICS IMPACT DRUG RESPONSE

PHARMACEUTICAL PHASE

PHARMACOKINETIC PHASE

PHARMACODYNAMIC PHASE

DOSE

DISINTEGRATION OF FORMULATION
DRUG DISSOLUTION

Dosing Regimen
dose, frequency, route

EFFECT Site Concentrations
DRUG-TARGET RECEPTOR INTERACTION

Effect

Effect Site Concentrations

Concentrations

Plasma, urine, tissue, ...

Parent and metabolites

EFFECTS

Rx, Toxic

source: A. Atkinson
Steady State vs. Kinetic Studies

- Steady state (SS) with constant IV infusion
 - conc. **not** changing with time
 - plasma conc. C_{SS} reflects C_{tissue} (usually)
 - PK (+load) determine time until ~SS

- SS from Repetitive dosing (oral, IM, etc.)
 - eventually reach constant “Profile SS”
 - $C_{max} = \text{peak}$; $C_{min} = \text{trough}$; average C_{SS}
Repetitive Dosing and “Profile SS”

source: Rowland & Tozer
Steady State vs. Kinetic Studies

- Many PK/PD concepts are for SS
 - Clearance; Volume of distribution
 - SS PD effect for given SS conc.
 (time to PD SS may be longer than time to plasma SS)

- But some studies are kinetic
 - e.g., single oral dose or I.V. bolus
 - Tracer kinetic studies; PET
 - Aim may be infer SS under rep. dosing
Linear vs Nonlinear System

“Linear Pharmacokinetics”

- double the dose \Rightarrow concentration doubles
 - **AUC proportional to dose**

- **Superposition principle (example):**

 If $\{I.V. \text{ bolus}\} \Rightarrow C_{iv}(t)$ and $\{\text{oral dose}\} \Rightarrow C_{oral}(t)$,

 then $\{\text{both dosing together}\} \Rightarrow$

 $$C(t) \equiv C_{iv}(t) + C_{oral}(t)$$

- holds for small enough doses (microdoses)

- linearity for large doses if transport, binding, and elimination remain first order
The relationship between the AUC of (+)-methylphenidate and dose following oral administration of 10, 20, 30, and 40 mg of the racemate to the same volunteer. No appreciable difference is seen for the metabolites. (From: Aoyama T, Kotaki H, Sasaki T. Nonlinear kinetics of threo-methylphenidate enantiomers in a patient with narcolepsy and in healthy volunteers. Eur J Clin Pharmacol 1993;44:79–84.)
Linear vs Nonlinear System

- single kinetic study + linearity \Rightarrow can predict response to any input, including getting to SS

- but for NONlinear systems:
 - CL, V, etc. not constant; depend on C_{SS}, Dose
 - requires testing at different doses; models
 - time to SS not predicted by single dose study

- Common nonlinearities
 - Saturation kinetics (Michaelis-Menten)
 - Saturable plasma protein, tissue binding
 - Threshold effects (e.g., glucose spilling)
 - Induction; Neuro./hormonal regulation
Importance of Experiment Design

- Quality & interpretation of PK/PD data depend critically on design:
 - Dose(s), route, and form (bolus vs infusion)
 - What to sample
 - Plasma, urine, tissue, PET, …
 - Total vs. unbound concentrations
 - Parent compound, metabolites
 - PD Effect measures
 - What times to sample in a kinetic study

- Train team: record what was done, not just asked
Pharmacokinetics & Pharmacodynamics

- **Basic Concepts**

- **Issues in Pharmacokinetics (PK)**
 - Clearance
 - Half-lives and Residence Times
 - Distribution Volumes
 - Absorption & Bioavailability Measures

- **Pharmacodynamics (PD)**
 - Steady State Models
 - Linking of PK & PD
Organ Clearance

- **Physiology:** organ clearance as SS concept

 - **"E"** = Single pass extraction fraction:
 \[E = \frac{\text{Elim. flux}}{\text{input flux}} = \frac{C_{B_{\text{art}}} - C_{B_{\text{ven}}}}{C_{B_{\text{art}}}} \]

 - Clearance ≡ Elim. flux / C_ref (vol/time)

 - If use \(C_{B_{\text{art}}} \) as \(C_{\text{ref}} \), Clearance = \(E \times Q \)

\[\text{Elim. Flux} = Q(C_{B_{\text{art}}} - C_{B_{\text{ven}}}) \quad (\text{mass/time}) \]
Organ Clearance

- Clearance $\equiv \text{Elim. flux}/C_{\text{ref}}$
 - Elimination (metabolism, transport) often function of unbound C_u (free plasma fraction)
 - $C_u = f_u C$ (but f_u not routine measurement)

- Clearance $= E \times Q$
 - high E ($E>0.7$), CL sensitive to ΔQ, not Δf_u
 - low E ($E<0.3$) $\downarrow Q \implies \uparrow$ transit time $\implies \uparrow E$
 CL sensitive to Δf_u, CYP induction or inhibition
 but SS “exposure” $= f_u AUC$ not sensitive to Δf_u
Renal Clearance (CL$_R$)

- Easiest organ CL to measure

e.g.

 $$\text{Net CL}_R = \frac{\text{urine exc. rate}}{\text{mid-collection C}}$$

- Elim. flux = filtration + secretion – reabs.

- GFR \approx CL$_{\text{creat}} = 120$ ml plasma water/minute

- CL$_R$ due just to filtration $=$ GFR$\times f_u$
Total Clearance (CL_T or just CL)

- SS Clearances add:
 \[
 CL = CL_R + CL_H + \text{nonrenal/nonhepatic clearance}
 \]

- Estimating CL from single dose kinetic study
 - i.v. Dose: \[
 CL = \frac{\text{Dose}}{\int_0^\infty C(t)\,dt} = \frac{\text{Dose}}{\text{AUC}}
 \]
 - Oral Dose: \[
 CL = F \times \frac{\text{Oral Dose}}{\text{AUC}}
 \]
 where \(F \) = fraction of dose reaching “central pool”
 (plasma + tissue in rapid equilibrium with plasma)

- \[
 CL_{\text{oral}} \equiv \frac{CL}{F} = \frac{\text{Oral Dose}}{\text{AUC}}
 \]
Estimating AUC

- **Trapezoidal rule:**

 Fit model of data to entire $C(t)$. e.g.,

 $$C(t) = A_1 \exp(-\lambda_1 t) + \ldots + A_n \exp(-\lambda_n t)$$

 $$\text{AUC} = \frac{A_1}{\lambda_1} + \ldots + \frac{A_n}{\lambda_n}$$

- **Fit model of data** to entire $C(t)$. e.g.,

 May need to fit single exponential at end to estimate tail area to ∞
Using Profile SS to estimate AUC

Profile SS after multiple repeated doses:

use area under one cycle to estimate single dose AUC

single dose AUC (from 0 to ∞)

source: Rowland & Tozer
Predicting SS Concentration #1

- **Constant i.v. flux infusion** I (mass/time)
- SS plasma conc. $\equiv C_{SS} = C(\infty)$
- total CL = (total Elim. Flux)/C_{ref}

 - Here C_{ref} is C_{SS}
 - Since patient at steady state, Elim. Flux = I

Therefore, $C_{SS} = I / CL$
Predicting SS Concentration #2

For repetitive oral dose D every T units of time, at Profile Steady State:

$$\text{average } C_{SS} = \frac{(FD/T)}{CL} .$$

i.e. $$\text{average } C_{SS} = \frac{(D/T)}{CL_{oral}}$$

where CL_{oral} estimated from kinetic study by

$$CL_{oral} = \frac{\text{Oral Dose/AUC}}{F} = CL/F$$
Half-lives and Residence Times

- 1-compartment approximation for body:
 - Drug distributes in **single**, well-mixed central pool
 - 1st order elimination rate \(k \) (time\(^{-1}\)); volume \(V \)

\[
V = \frac{Dose}{C(0)}
\]

\[
t_{1/2} = \frac{0.693}{k} \quad \text{(half-life of drug in whole body)}
\]

\[
MRT = \frac{1}{k} \quad \text{(Mean Residence Time in body)}
\]

\[
V = \text{total drug distribution volume} = \text{CL} \times \text{MRT}
\]

\[
C(t) = \left(\frac{Dose}{V}\right)\exp(-kt)
\]

\[
\log C(t)
\]
"Is this single exponential decay?"

"What's the half-life of this drug?"
conc. on LOG scale suggests “No!”

initial $t_{1/2}$ 0.6 hours

terminal $t_{1/2}$ 14 hours
Half-lives and Residence Times

- multi-compartment approximation for body:
 - Drug distributes in central + peripheral pool(s)
 - $C(t)$ exhibits elimination and distribution kinetics

$$C(t) = A_1 \exp(-\lambda_1 t) + A_2 \exp(-\lambda_2 t)$$

- 2 or more “half-lives,” but terminal half-life not always the main factor for dosing, accumulation, etc.
- Relative importance each half-life depends on A_i/λ_i
Caution: Interpreting Terminal $t_{1/2}$

- Terminal $t_{1/2}$ often rate limited by elimination
- BUT NOT ALWAYS!
- counterexample: gentamicin
 - $CL_{cr} \ 6 - 107$ ml/min
 - terminal $t_{1/2}$ in all ~ 90 hrs
 - renal impairment affects mainly first half-life
 - avg C_{SS} still $(D/T)/CL_{oral}$
 - but dosing interval T to achieve desired C_{max}/C_{min}
 trickier to compute

source: Rowland & Tozer Schentag et al. JAMA 238:327-9, 1977
Mean Residence Time (MRT)

- MRT = mean time molecule of drug resides in body before being irreversibly eliminated

- Assumes linear system

- May be useful summary measure when there are multiple half-lives

- Effective (overall) half-life = $0.693 \times \text{MRT}$
Mean Residence Time

- MRT estimated from a kinetic study:

 Measure plasma concentration $C(t)$ after dose:

 $$\text{MRT} \geq \frac{\text{AUMC}}{\text{AUC}} \equiv \frac{\int_0^\infty tC(t)dt}{\text{AUC}}$$

- MRT = AUMC/AUC requires

 - no “peripheral” elimination
 - no traps
 - linear PK
Mean Residence Time

- **1-compartment model**
 - $MRT = \frac{1}{k} = \frac{V_1}{CL}$
 - half-life = $0.693 \times MRT$
 - time to reach 90% SS following constant flux infusion is 2.3 MRT’s = 3.3 half-lives

- **Multi-exponential model**
 - $\frac{AUMC}{AUC} = \frac{w_1}{\lambda_1} + \ldots + \frac{w_n}{\lambda_n}$
 where $w_i \propto \left(\frac{A_i}{\lambda_i} \right)$ and $w_1 + \ldots + w_n = 1$
 - 2.3 MRT’s (i.e., 3.3 effective half-lives) is time to reach at least 84% SS
Distribution Volumes

Volume of Central Pool (V_1)

- $V_1 = \text{i.v. Dose}/C(0)$
- $C(0)$ estimated by back-extrapolating from early concentrations
- $V_1 = \text{plasma + tissues in rapid equilibrium by time of earliest plasma sample}$
- determines (transient) peak plasma concentration following i.v. dose
multi-compartment approximation for body:
- Drug distributes in central + peripheral pool(s)
- $C(t)$ exhibits elimination and distribution kinetics

$\log C(t)$

$C(t) = A_1 \exp(-\lambda_1 t) + A_2 \exp(-\lambda_2 t)$

- Back-extrapolated $C(0) = A_1 + A_2$
- $V_1 = \text{Dose} / C(0)$
SS **Total Distribution Volume**

\((V_{SS}, V_D \text{ or just } V) \)

- Assume at SS
- \(A(\infty) = \text{total amount of drug in body at SS} \)
- Define \(V = A(\infty) / C_{SS} \)

 Hypothetical volume SS mass would have to occupy to yield same concentration as \(C_{SS} \)

\[V = CL \times MRT \]

- Provides insights into distribution, permeation, tissue binding, etc.
- back-extrapolated \(C(0) \) from **terminal** decay (i.e., \(V_{\text{extrap}} \)) may overestimate \(V \)
$t_{1/2}$ depends on CL and V.
Absorption & Bioavailability

FACTORS AFFECTING RATE AND EXTENT OF DRUG ABSORPTION

source: A. Atkinson
Bioavailability

- Measures of extent and rate of absorption from admin. site to measurement site (latter usually central pool, i.e. plasma)
- i.v. administration is “gold standard” for complete and instantaneous absorption
- single oral dose: “informal” measures are:

\[
C_{\text{peak}} \quad t_{\text{peak}}
\]
Bioavailability – formal measures

“F” estimates extent of absorption
- Separate i.v. and oral studies
- \[F = \left(\frac{\text{Dose}_{\text{iv}}}{\text{Dose}_{\text{oral}}} \right) \times \frac{\text{AUC}_{\text{oral}}}{\text{AUC}_{\text{iv}}} \]
 fraction of administered dose reaching plasma

MAT (mean absorption time)
- \[\frac{\text{AUMC}_{\text{oral}}}{\text{AUC}_{\text{oral}}} - \frac{\text{AUMC}_{\text{iv}}}{\text{AUC}_{\text{iv}}} \]

Absorption rate constant (compartmental model)

Absorption flux time course (deconvolution)
Example: Rifampicin pretreatment reduces oral digoxin bioavailability.

FIGURE 7-4. Rifampicin pretreatment reduces the absorption of digoxin. Shown are plots of mean plasma digoxin concentration–time profiles after oral and i.v. administration (as a 30-min infusion) of 1 mg digoxin alone (●) and after 10 days rifampicin pretreatment (600 mg daily, ●) to seven healthy adults. A clear depression in the oral absorption of digoxin is inferred by the lower concentrations after oral but not i.v. administration after rifampicin pretreatment. This was corroborated by a 30% decrease in total AUC(0–144hr) (from 54.8 to 38.2 μg-hr/L), corresponding to a fall from 63% to 38% in oral bioavailability. (From: Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999;104:147–153.)
Pharmacokinetics & Pharmacodynamics

- Basic Concepts
- Issues in Pharmacokinetics (PK)
 - Clearance
 - Half-lives and Residence Times
 - Distribution Volumes
 - Absorption & Bioavailability Measures
- Pharmacodynamics (PD)
 - Steady State Models
 - Linking of PK & PD
Dose-Effect Relationships

Drug Dose

- C(t)
- PD
- Effect(s)

PK

Covariates

- age
- sex
- body size
- organ function
- disease
- other drugs
- genes/markers
Simplest PD Model: Binary, 2-State

Graded Effect $\propto 1^0$ Drug-Receptor complex

Effect = \frac{\text{Maximal effect} \cdot [\text{Drug}]}{K_D + [\text{Drug}]}

(K_D = k_2/k_1)

source: Frank M. Balis
Graded Dose-Effect Curve

Maximal effect (efficacy)

% of Maximal Effect

EC\textsubscript{50}

[Drug]
Comparing Dose-Effect Curves

\[\text{Effect} = \frac{\text{Maximal effect} \cdot [\text{Drug}]}{K_D + [\text{Drug}]} \]
Empirical Pharmacodynamic Models

- Fixed effect model
- Linear model
- Log-linear model
- E_{max} model
- Sigmoid E_{max} model

Effect equations:

- Linear model: $\text{Effect} = E_0 + S \cdot [\text{Drug}]$
- Log-linear model: $\text{Effect} = I + S \cdot \log([\text{Drug}])$
- E_{max} model: $\text{Effect} = \frac{E_{\text{max}} \cdot [\text{Drug}]^H}{EC_{50}^H + [\text{Drug}]^H}$
Sigmoid E_{max} PD Model

Effect (%)

- $H = 5$
- $H = 2$
- $H = 1$
- $H = 0.5$
- $H = 0.1$

Effect (%)

- EC_{50}

[Drug]

source: Frank M. Balis
Hysteresis and Proteresis Loops

- Equilibration delay in plasma and effect site conc.
- Formation of active metabolite
- Receptor up-regulation

- Tolerance
- Receptor tachyphylaxis
PK/PD Applications

- **Drug discovery/development**
 - Scaling (cell culture ⇒ animal ⇒ human)
 - Feasible dosing, drug delivery
 - Predict and quantify inter- & intra-patient variability
 - Regulatory issues (FDA)

- **Basic and Clinical Sciences**
 - Understand *in vivo* mechanisms
 - Quantify PK and PD study endpoints
 - Design of clinical studies
 - Dosing regimens
 - Timing of samples
 - Identify important covariates
PK/PD Applications

- **Therapy**
 - Optimal treatment strategies
 - Individualization of therapy
 - Clinical monitoring (PD) or predicting (PK/PD) efficacy and toxicity endpoints

- **Pharmacogenetics/pharmacogenomics**
 - Hereditary variations in response (PK or PD)
 - Identification of genes or loci
 - Genome-based drug discovery
 - Predict efficacy and potential adverse effects