Innovative Multimodal Imaging Techniques in Brain Tumor Clinical Trials

Benjamin M. Ellingson, Ph.D.
Assistant Professor of Radiology, Biomedical Physics, and Bioengineering
Brain Tumor Imaging Laboratory (BTIL) & UCLA Neuro-Oncology Program
Dept. of Radiological Sciences
David Geffen School of Medicine at UCLA

CTSI: Neuroimaging: A Short Course on Modern Imaging Modalities in Clinical Invest.
11 April 2014
Disclosures

- MedQIA, LLC - Paid Consultant
- Genentech/Roche - Paid Consultant & Grant Support
- Tocagen - Consultant
- Amgen - Consultant
- Boston Scientific - Consultant
- ACRIN - Paid Consultant
- Siemens - Paid Consultant & Grant Support
- Celgene - Paid Consultant
- Pharmacyclics - Consultant
- National Brain Tumor Society - Paid Consultant & Grant Support
- National Institutes of Health - Grant Support
- Olea Medical - Consultant
Basics of Brain Tumor Biology
Brain Tumor Biology

- Mutations can cause protein structure alterations, resulting in a cascade of molecular changes (signaling)
- These can cause further issues and downstream effects
 - *Uncontrolled Proliferation*
 - *Metastases*
 - *Metabolic Dysfunction*
• Cancer arises from normal cells

• **Benign**
 • Non-cancerous tumor. Slow growing.
 • Can transform to a malignant tumor

• **Malignant**
 • Cancerous.
 • Invades and destroys nearby tissue and infiltrates/metastasizes
Brain Tumor Biology

Clonal Genetic Model of Cancer
Brain Tumor Biology

- WHO = World Health Organization
- **Grade:**
 - How abnormal cells look under the microscope
 - How quickly they are likely to grow or spread
 - I-IV from least to most malignant/differentiated
 - I: “Well differentiated” (low Grade)
 - II: “Moderately differentiated” (Intermediate Grade)
 - III: “Poorly differentiated” (High Grade / Malignant)
 - IV: “Undifferentiated” (High Grade / Malignant)
Brain Cancer - Gliomas

- Brain Cancer **Does Not Metastasize** *(No Staging, Only Grading)*
- Neuroblastomas & Epidemoma
- Oligodendrogliomas
 - *Oligodendroglioma (WHO II)*
 - *Anaplastic Oligodendroglioma (WHO III)*
- Astrocytomas
 - *Astrocytoma (WHO II)*
 - *Anaplastic Astrocytoma (WHO III)*
- Mixed Gliomas
 - *Astrocytoma and Oligodendroglioma*
- Glioblastoma (GBM) - WHO IV
Brain Cancer Incidence

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Malignant</th>
<th>Non-Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children (0-14)</td>
<td>3.64</td>
<td>1.50</td>
</tr>
<tr>
<td>Children (0-19)</td>
<td>3.33</td>
<td>1.93</td>
</tr>
<tr>
<td>Adults (20+)</td>
<td>8.85</td>
<td>18.53</td>
</tr>
<tr>
<td>All Ages</td>
<td>7.27</td>
<td>13.77</td>
</tr>
</tbody>
</table>

† Rates per 100,000 and age-adjusted to the 2000 United States standard population

Central Brain Tumor Registry United States, 2012

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2014
Brain Cancer Incidence

Astrocytomas and Glioblastomas account for 75% of all gliomas

- Glioblastoma: 54.4%
- All Other Gliomas: 1.9%
- Oligoastrocytic Tumors: 3.3%
- Pilocytic Astrocytoma: 5.1%
- Anaplastic Astrocytoma: 6.0%
- Oligodendroglioma: 6.1%
- Diffuse Astrocytoma: 9.1%
- Glioma Malignant, NOS: 7.3%
- Ependymal Tumors: 6.8%

ICD-O-3 codes = 9380-9384, 9391-9460, 9480
Brain Cancer Histology

Infiltration of high-grade astrocytoma into adjacent brain tissue
Preoperative situation

- > 40 mm from tumor edge: 1:1000
- 20 - 40 mm from tumor edge: 1:100
- 20 mm brain adjacent to tumor: 1:10
- 40 mm tumor: 1:1

- 0.2% tumor cells
- 1.8% tumor cells
- 6% tumor cells
- 92% tumor cells

Ratio of tumor cells to total cells
Percentage of tumor cell population

Wilson, 1990
Cancer Phenotypes

• Key Phenotypes/Characteristics of Glioblastoma
 • Uncontrolled Proliferation (positive feedback)
Cancer Phenotypes

- Key Phenotypes/Characteristics of Glioblastoma
 - Uncontrolled Proliferation (positive feedback)
 - Hypoxia (HIF-1α)
 - Invasion - Migration
Cancer Phenotypes

- Key Phenotypes/Characteristics of Glioblastoma
 - Uncontrolled Proliferation (positive feedback)
 - Hypoxia (HIF-1α)
 - Invasion - Migration
 - Vascular Proliferation - Angiogenesis
Cancer Phenotypes

• Key Phenotypes/Characteristics of Glioblastoma
 • Uncontrolled Proliferation (positive feedback)
 • Hypoxia (HIF-1α)
 • Invasion - Migration
 • Vascular Proliferation - Angiogenesis
 • Excretion of Growth Factors and Signaling Molecules
Cancer Phenotypes

• Key Phenotypes/Characteristics of Glioblastoma
 • Uncontrolled Proliferation (positive feedback)
 • Hypoxia (HIF-1α)
 • Invasion - Migration
 • Vascular Proliferation - Angiogenesis
 • Excretion of Growth Factors and Signaling Molecules

• GOAL: Detect & Quantify these Phenotypes/Behaviors
Biomarkers

- **Definition of Biomarkers**

 “A characteristic that is **objectively measured** and evaluated as an **indicator of normal biological processes**, pathogenic processes, or pharmacologic **responses to a therapeutic intervention**”

Mutation

Genome/Proteome

Signal Pathway

Phenotype/Clinical Characteristic

Imaging Characteristic

Outcomes
Biomarkers

• Definition of Biomarkers

• “A characteristic that is **objectively measured** and evaluated as an **indicator of normal biological processes**, pathogenic processes, or pharmacologic **responses to a therapeutic intervention**”
Surgical Resection

- Extent of Resection (biopsy vs. resection) affects OS
 - High grade gliomas: GTR 2-yr survival 19%, STR = 0% (Ammirati, *Neurosurg*, 1987)
 - OS GTR = 13 mo vs. STR = 8.8 mo (Lacroix, *J Neurosurg*, 2001)

- **High Grade Gliomas cannot be cured with surgery**
 - Goal is to diagnose, relieve mass effect, and achieve GTR (Ryken, *J Neuroonc*, 2008)
Current Therapies for Brain Tumors

• **Radiation Therapy**
 - External Beam Radiation Therapy (XRT) significantly prolongs survival
 - Dose 4500 cGy ~ 13 week OS; 6000 cGy ~ 42 week OS
 - Administered 5 days per week in 1.8-2.0 Gy Fractions
 - Interstitial Brachytherapy
 - Implantation of radioactive seeds
 - Limited value and rarely used -- results in substantial radiation necrosis
 - Experimental RT
 - Proton beam therapy; Neutron Capture Therapy
 - Radiosensizers
Current Therapies for Brain Tumors

- **Chemotherapy (Anti-neoplastic Agents)**
 - Adjuvant chemo >6-10% increase in 1 year survival rates (Fine, *Cancer*, 1993; Stewart, *Lancet*, 2002)
 - Temozolomide (TMZ) -- * Current standard of care
 - Orally active alkylating agent approved by FDA in 2005
 - PFS 6.9 mo vs 5 mo; OS 14.6 mo vs. 12.1 mo; 2 yr survival rate 26% vs 10%
Current Therapies for Brain Tumors

• RT+TMZ followed by adj TMZ significantly improves OS (Stupp, N Eng J Med, 2005)
 • PFS 6.9 mo vs 5 mo; OS 14.6 mo vs. 12.1 mo; 2 yr survival rate 26% vs 10%

Overall Survival

Stupp, N Eng J Med, 2005
• Chemotherapy (Anti-neoplastic Agents)
 • Nitrosoureas: (BCNU; carmustine & carmustine wafers [Gliodel])
 • Approved by FDA in 2002
 • Increased survival 13.8 mo vs. 11.6 mo (Westphal, Acta Neurochir, 2006)
 • Lots of toxicity & other issues (CSF leaks, increased ICP)
Current Therapies for Brain Tumors

• Other Chemotherapy (Anti-neoplastic Agents)
 • Lomustine (CCNU)
 • Alkylating agent
 • 5-FU
 • Transformed into different cytotoxic metabolites, resulting an apoptosis
 • Vorinostat
 • Histone deacetylase inhibitor
 • Irinotecan (Camptosar)
 • topoisomerase inhibitor -- prevents DNA from unwinding
 • Topotecan (Hycamtin)
 • topoisomerase inhibitor
 • Vincristine (Oncovin)
 • leurocristine (VCR) - vinca alkaloid -- mitotic inhibitor
 • Temsirolimus (Torisel)
 • mTOR inhibitor - blocks growth and division
• Anti-Angiogenic Agents (Reduces Blood Vessels)
 • Bevacizumab (Avastin) -- VEGF
 • Humanized monoclonal antibody that inhibits VEGF-A.
 • FDA Approval for recurrent GBM in May 2009
 • Increases 6 month PFS (Vrendenburgh, Clin Cancer Res, 2007; J Clin Onc, 2007)
 • Cediranib (AZD2171)
 • Tyrosine kinase inhibitor, VEGF inhibitor
 • Sorafenib
 • Tyrosine kinase inhibitor, VEGF inhibitor
 • Cetuximab
 • EGFR inhibitor
 • Erlotinib
 • Tyrosine kinase inhibitor, EGFR
Current Therapies for Brain Tumors

• **Immunotherapy**

 • **Dendritic Cell Vaccine**

 • Creates a vaccine from patient-specific tumor cell proteins + dendritic cells from the patients blood. Dendritic cells mediate T-cell immune response to the remaining tumor

 • **Rindopepimut (CDX-110)**

 • Immunotherapy that targets tumor specific oncogene EGFRvIII

 • **Retroviral Vectors (Toca511)**

 • Retrovirus that delivers genetic instructions to produce cytosine deaminase inside cancer cells. CD then converts 5-FC (an antifungal) to 5-FU (cytotoxic)

 • **Alloreactive Cytotoxic T Lymphocytes (AlloCTL)**
• Poor survival is largely due to ineffective therapies
 • Blood Brain Barrier (BBB) penetration
 • Treatment resistance
 • Tumor infiltration

• Need for imaging biomarkers that can:
 • Detect treatment response and early failure
 • Quantify changes in biological processes within the tumor
 • Spatially localize regions of growing or responding tumor
Standard Neuroimaging Protocol for Clinical Trials

• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
Advanced Neuroimaging Protocol for Clinical Trials

• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema & Non-Enhancing Tumor
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
 • Chemical Exchange Saturation Transfer (CEST) MRI
 • Tissue pH, Amino Acid Concentration
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
 • Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
Advanced Neuroimaging Protocol for Clinical Trials

• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema & Non-Enhancing Tumor
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
 • Chemical Exchange Saturation Transfer (CEST) MRI
 • Tissue pH, Amino Acid Concentration
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
 • Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
T2-Weighted Imaging

Mobile H_2O

Free Mobile Water

- Structured water
 - Hydrophobic surface

Bound water
- Rotationally bound (dipolar)
- Rotationally bound (ionic)

Immobile H_2O

Irrotationally bound (dipolar)
Irrotationally bound (ionic)

Shorter T2

Long T2 (Bright)

Short T2 (Dark)
T2-Weighted Imaging

• **T2-Weighted MRI**
 • MRI sequence with a long TE (80-120ms) and long TR (>4s)
 • Related to rotational mobility of water molecules
 • Mobile water = Long T2 = Bright Areas
 • $T2_{edema} > T2_{tumor} > T2_{normal\ brain}$

\[
\frac{M_{xy}}{M_0} = e^{-TE/T2}
\]

Long T2 = More Signal = Bright
T2-Weighted Imaging

T2-Weighted

Edema
T2-Weighted Imaging

Infiltrative Tumor
T2-Weighted Imaging
T2-Weighted FLAIR Imaging

- T2-Weighted FLAIR MRI
 - “Fluid Attenuated Inversion Recovery” - FLAIR
 - Inversion Recovery (IR) preparation nulls MR signal from CSF
T2-Weighted FLAIR Imaging

T2-Weighted

FLAIR
T2-Weighted FLAIR Imaging

T2-Weighted

FLAIR

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2014
T2-Weighted FLAIR Imaging

- T2-Weighted FLAIR MRI
 - Sensitive to both Edema and Non-Enhancing tumor
Double Inversion Recovery (DIR)

T2

FLAIR

Double IR
Advanced Neuroimaging Protocol for Clinical Trials

- Magnetic Resonance Imaging (MRI)
 - Standard MR Techniques
 - T2/FLAIR
 - Edema
 - Non-enhancing (infiltrating) tumor
 - T2 Relaxometry
 - Edema & Non-Enhancing Tumor
 - Diffusion MRI
 - Cellularity, Proliferation, Invasion
 - Chemical Exchange Saturation Transfer (CEST) MRI
 - Tissue pH, Amino Acid Concentration
 - Dynamic Contrast-Enhanced (DCE) MRI
 - Vascular Permeability
 - Dynamic Susceptibility-Contrast (DSC) MRI
 - Blood Volume, Blood Flow
 - Contrast-Enhanced T1-Weighted
 - Abnormal Vasculature
 - Proliferative Tumor
T2 Relaxometry

TE = 10ms TE = 100 ms TE = 200 ms

T2 [ms]

0 500
T2 Relaxometry

- Possible surrogate for “edema” and “non-enhancing tumor”
- T2 measurements do not vary significantly across field strength

1.5T GE

1.5T Siemens

3T Siemens
T2 Relaxometry

- $T_{2\text{edema}} > T_{2\text{tumor}} > T_{2\text{normal brain}}$
Differential Quantitative T2 Mapping (DQT2)
Differential Quantitative T2 Mapping (DQT2)

Pre-Bev Post-Bev Pre-Bev Post-Bev
Advanced Neuroimaging Protocol for Clinical Trials

• **Magnetic Resonance Imaging (MRI)**
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema & Non-Enhancing Tumor
 • **Diffusion MRI**
 • Cellularity, Proliferation, Invasion
 • Chemical Exchange Saturation Transfer (CEST) MRI
 • Tissue pH, Amino Acid Concentration
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
 • Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
Diffusion MRI

\[S = S_0 \cdot e^{-b \cdot \text{ADC}} \]
Diffusion MRI

A

B

C

0 1000 2000 3000 4000 5000
0 200 400 600
b-value [s/mm²]

b-value [s/mm²]

b = 0 s/mm²
b = 50 s/mm²
b = 100 s/mm²
b = 250 s/mm²
b = 500 s/mm²

b = 750 s/mm²
b = 1000 s/mm²
b = 2500 s/mm²
b = 3500 s/mm²
b = 5000 s/mm²

MR Signal Amplitude [s.u.]

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2014
Diffusion MRI is a Cellularity Biomarker

Ellingson, JMRI, 2010
Diffusion MRI is a Cellularity Biomarker

ADC Map

- Edema (high ADC)
- Necrosis (high ADC)
- Viable Tumor (low ADC)
Diffusion MRI is a Cellularity Biomarker
Diffusion MRI is a Cellularity Biomarker

ADC Before RT ADC After RT
Diffusion MRI is a Cellularity Biomarker

A. Percent Progression Free

- ADCL > 1.0 um²/ms
- ADCL < 1.0 um²/ms

B. Percent Survival

- ADCL > 1.0 um²/ms
- ADCL < 1.0 um²/ms

Radiotherapy + TMZ
Surgery
MRI (~10 wks after RT)
Adjuvant TMZ
Progression

Post-Contrast T1-Weighted
T1 Subtraction Map
Enhancing Tumor
ADC Map

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2014
Diffusion MRI is a Cellularity Biomarker

Functional Diffusion Mapping (fDMs)
Diffusion MRI is a Cellularity Biomarker

Ellingson, Neuro Onc, 2012
Diffusion MRI is a Cellularity Biomarker

Ellingson, Neuro Onc, 2012
Cell Invasion, Motility, and Proliferation Level Estimate (CIMPLE) Maps

\[
\frac{d}{dt} ADC(t) = \rho \cdot ADC(t) + D \nabla^2 ADC(t)
\]

Proliferation

Invasion
Cell Invasion, Motility, and Proliferation Level Estimate (CIMPLE) Maps

T1+C

Proliferation

Cell Proliferation [1/yr]

0 → 10

Ellingson, J Neuroonc, 2012
• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema & Non-Enhancing Tumor
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
 • Chemical Exchange Saturation Transfer (CEST) MRI
 • Tissue pH, Amino Acid Concentration
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
 • Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
• Cancer tissues have low extracellular pH and high intracellular pH
• Acidosis drives malignant processes
• Cancer cells often use glutamine (amino acid) for fuel
• Therefore, CEST imaging of glutamine may be sensitive to tumor cells
Chemical Exchange Saturation Transfer (CEST)

- Use a soft RF pulse to saturate spins on macromolecular 1H that are undergoing chemical exchange with water
pH-Weighted MRI of Cancer Using Glutamine CEST

• CEST signature for glutamine (“amine protons” at +2.8ppm wrt water) is sensitive to low pH
 • Abundance of free 1H in solution at low pH available for exchange
 • Reduction in exchange rates, leading to better z-spectra
pH-Weighted MRI of Cancer Using Glutamine CEST

PATIENT #1

Baseline 7/24/13
Recurrence 9/24/13

T1+C

pH-Weighted MRI

PATIENT #2

Pre-RT 8/21/13
Post-RT 10/14/13

CEST Asymmetry @ 28ppm

+5%
-5%
pH-Weighted MRI of Cancer Using Glutamine CEST

Post-Contrast T1-Weighted

Pre-RT 7/30/13
Mid-RT 8/26/13
Post-RT 9/23/13
Recurrence 10/23/13

pH-Weighted MRI

CEST Asymmetry @ 28ppm

-5%
+5%
• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema & Non-Enhancing Tumor
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
 • Chemical Exchange Saturation Transfer (CEST) MRI
 • Tissue pH, Amino Acid Concentration
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
 • Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
Brain Tumor Contrast Enhancement

Normal Vasculature

Neovasculature
Brain Tumor Contrast Enhancement

Normal Vasculature

Neovasculature
Brain Tumor Contrast Enhancement

Serial T1-Weighted Images

Time
Dynamic Contrast Enhanced (DCE)-MRI

\[Gd \text{ Balus} \]

\[\text{Plasma} \]

\[K^{trans} \]

\[k_{ep} \]

\[\text{EC Space} \]

\[C_e(t) \]

\[C_p(t) \]

\[\text{Kidneys} \]
Dynamic Contrast Enhanced (DCE)-MRI

\[
\begin{align*}
\text{Plasma: } C_p(t) & \rightarrow \text{EC Space: } C_e(t) \\
\text{Kidneys: } & \text{Gd Bolus: }
\end{align*}
\]

- \(K^{\text{trans}} \) and \(k_{ep} \)

Dependent on Contrast Agent Concentration & Compartmental Volume Fraction

“Contrast Wash Out”

“Contrast Wash In”

- Permeability (P)
- Vessel Surface Area (S)
- Flow Rate (F)

Time

Signal Intensity
Dynamic Contrast Enhanced (DCE)-MRI

\[K_{\text{trans}} = 0 \text{ min}^{-1} \]

\[K_{\text{trans}} = 0.048 \text{ min}^{-1} \]
Dynamic Contrast Enhanced (DCE)-MRI

\[\text{Gd Bolus} \]

\[K^{\text{trans}} \]

\[k_{ep} \]

\[\text{Plasma} \quad C_p(t) \]

\[\text{EC Space} \quad C_e(t) \]

\[\text{Kidneys} \]
Dynamic Contrast Enhanced (DCE)-MRI

\[C_p(t) \xrightarrow{K_{trans}} EC \xrightarrow{k_{ep}} C_e(t) \]

\[\text{T2-Weighted} \quad \text{Post-Contrast T1w} \quad \text{K}_{\text{trans}} \]

[Diagram showing the flow of Gd Bolus through Plasma, EC Space, and Kidneys, with color maps for T2-Weighted, Post-Contrast T1w, and K_{trans}]
Advanced Neuroimaging Protocol for Clinical Trials

• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema & Non-Enhancing Tumor
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
 • Chemical Exchange Saturation Transfer (CEST) MRI
 • Tissue pH, Amino Acid Concentration
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
 • Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
Perfusion MRI is a Vascularity Biomarker

Standard DSC Method:

ΔR_2^* or ΔR_2

CBV

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2014
Perfusion MRI is a Vascularity Biomarker

DSC Time Series

T1+C

rCBV
Perfusion MRI is a Vascularity Biomarker

\[T_{1+C} \]

\[rCBV \]
Perfusion MRI is a Vascularity Biomarker

T_1+C

$rCBV$
Perfusion MRI is a Vascularity Biomarker
Perfusion MRI is a Vascularity Biomarker

A. High Pre-Treatment Atlas-Defined Hypervascular Volume (> 2.35 cc)
Low Pre-Treatment Atlas-Defined Hypervascular Volume (< 2.35 cc)

B. High Post-Treatment Atlas-Defined Hypervascular Volume (> 0.14 cc)
Low Post-Treatment Atlas-Defined Hypervascular Volume (< 0.14 cc)

C. Small Decrease in Atlas-Defined Hypervascular Volume (< 80% Decrease)
Large Decrease in Atlas-Defined Hypervascular Volume (> 80% Decrease)

A. Percent Progression Free vs Progression-Free Survival (Days)
P = 0.0027

B. Percent Progression Free vs Progression-Free Survival (Days)
P = 0.0025

C. Percent Progression Free vs Progression-Free Survival (Days)
P = 0.0672

A. Percent Survival vs Overall Survival (Days)
P = 0.0654

B. Percent Survival vs Overall Survival (Days)
P = 0.0304

C. Percent Survival vs Overall Survival (Days)
P = 0.0483

David Geffen School of Medicine
UCLA Health System

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2014
Advanced Neuroimaging Protocol for Clinical Trials

• Magnetic Resonance Imaging (MRI)
 • Standard MR Techniques
 • T2/FLAIR
 • Edema
 • Non-enhancing (infiltrating) tumor
 • T2 Relaxometry
 • Edema & Non-Enhancing Tumor
 • Diffusion MRI
 • Cellularity, Proliferation, Invasion
 • Chemical Exchange Saturation Transfer (CEST) MRI
 • Tissue pH, Amino Acid Concentration
 • Dynamic Contrast-Enhanced (DCE) MRI
 • Vascular Permeability
 • Dynamic Susceptibility-Contrast (DSC) MRI
 • Blood Volume, Blood Flow
• Contrast-Enhanced T1-Weighted
 • Abnormal Vasculature
 • Proliferative Tumor
Standard MRI - Contrast Enhancement

Pre-Contrast

Post-Contrast
Standard MRI - Contrast Enhancement

Pre-Contrast T1w MRI

Post-Contrast T1w MRI

Normalized Raw Subtraction Map

CE-ΔT1w Map

Difference in Normalized Signal Intensity (Day 2 - Day 1)

1.0
0.5
0.0
0.0
Standard MRI - Contrast Enhancement

FLAIR Pre-Contrast Post-Contrast T1 Subtraction

A

B

C
Post-Bevacizumab Volume

- CE-ΔT1w, HR = 0.46; P < 0.001***
- Conventional, HR = 0.67; P = 0.041*

Post-Bevacizumab Volume

- CE-ΔT1w, HR = 0.46; P < 0.001***
- Conventional, HR = 0.67; P = 0.041*

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, 2014
Advanced Neuroimaging Protocol for Neuro-Oncology

- Magnetic Resonance Imaging (MRI)
 - T2/FLAIR
 - Edema & Infiltrating tumor
 - T2 Relaxometry
 - Edema & Non-Enhancing tumor
 - Diffusion MRI
 - Cellularity, Proliferation, Invasion
 - CEST MRI
 - pH, Amino Acid Concentration
 - Dynamic Contrast-Enhanced (DCE) MRI
 - Vascular Permeability
 - Dynamic Susceptibility-Contrast (DSC) MRI
 - Blood Volume, Blood Flow
 - Contrast-Enhanced T1-Weighted
 - Abnormal Vasculature & Proliferative Tumor
Benjamin M. Ellingson, Ph.D.
Asst. Professor of Radiology,
Biomedical Physics, and
Bioengineering

UCLA Brain Tumor Imaging Lab (BTIL)
Dept. of Radiological Sciences
David Geffen School of Medicine
University of California - Los Angeles

bellingson@mednet.ucla.edu
(310) 481-7572
http://ellingsonbiomedical.com

924 Westwood Blvd.
Suite 615
Los Angeles, CA 90024