The Obesity Paradox and Discrepancy between O_2 Consumption and Heart Failure Prognosis – It’s All in the Fat

Lorraine S. Evangelista, PhD, RN
Assistant Professor, UCLA School of Nursing
Objectives

- Demonstrate the paradox between obesity and heart failure prognosis.
- Discuss the rationale for correction of cardiopulmonary stress data (used as predictors of survival and listing of cardiac transplantation) for lean weight (as opposed to total body weight).
Case Study

- 59 y.o. man presented to the HF clinic for evaluation
 - Dyspnea on exertion, orthopnea, PND, edema lower extremities (NYHA class II to III status)
 - Optimized on diuretics, digitalis, ACE inhibitors, β-blockers, and spironolactone.
 - Ht 70’ wt, 217 lb, BMI, 31 kg/m²; 33% body fat.
 - Resting HR 60 bpm, BP 112/68 mm Hg.
 - CPX - max peak HR 130 bpm, BP 190/90 mm Hg.
 - Peak VO₂ 13.4 mL/kg/min, peak O₂ pulse (peak VO₂ /peak heart rate) 11.8 mL per beat
Obesity is a risk factor for the development of HF1-2

- Obesity and HF often co-exist 3
 - 15\% to 35\% of patients with HF are obese
 - 30\% to 60\% of patients with HF are overweight
Intermediate Pathways

Risk Factors
- **Obesity**
 - Increased adiposity
 - Sympathetic nervous system↑
 - RAAS, Endothelin-1, vasopressin↑
 - Natriuretic peptides↑

Diabetes
- Glucose intolerance↓
- Insulin resistance
- Dyslipidemia
- Hypertension
- Hypercoagulability

Intermediate Pathways
- **Preload**
 - RA, RV
 - Blood volume
 - Plasma viscosity
 - Peripheral Resistance
 - Conduit stiffness

Atrial Remodeling
- LA

LV Remodeling
- LV

PA Pressure
- Afterload

Hemodynamic changes
- **Asymptomatic LV systolic & diastolic dysfunction**

Modified from Vasan RS. Heart 2003; 89;1127-29
The Obesity Paradox

Obesity in general is associated with ↑ mortality 4-11
Pts in the highest quintile had better event-free survival than pts in the lowest quintile.

In a logistic regression analysis, a higher % of body fat ($X^2, 9.1; P=.002$) was the strongest independent predictor of event-free survival.

For every 1% absolute ↑ in % of body fat, a ↓ in major clinical events exceeding 13% reported.

Cardiopulmonary Exercise (CPX)

- CPX has become the accepted standard for HF prognostication & risk stratification (RS) for transplant; Peak VO$_2$ >14 mL/kg/min cut-off value of RS$^{12-15}$
 - Peak VO$_2$ >18 mL/kg/min have a very good prognosis
 - Peak VO$_2$ <10 ml/kg/min have very poor prognosis

- Generally corrected for total wt (opposed to lean wt) despite the fact that fat is not aerobically active. 13,15

- CPX may lose prognostic power in some sub-groups with ↑% body fat – obese patients and women.

- In an era of β-blockers, adjusted exercise indices may predict better outcome.
These figures show that adjusted exercise indices (including peak VO2 and peak O2 pulse) predict prognosis better than non-adjusted indices.

Case Study Revisited

- Patient’s peak VO$_2$ & O$_2$ pulse corrected for lean body mass
 - 19.7 mL/kg/min & 15.6 mL per beat.

- These adjusted indices suggest a favorable prognosis; thus patient can qualify for a heart transplant.

- Recommendations: consistently have the peak VO$_2$ lean reported and utilize these values in evaluating sub-groups of patients.
References