INTERACTION OF AN ASTHMA PROMOTING IL4RA ALLELE WITH OXIDATIVE STRESS PATHWAYS

Loida Viera-Hutchins, M.D.
Mentor: Talal Chatila, M.D., MSc.
Overall objective

- To study the role gene-environment interactions in promoting the development of asthma
Asthma

- 20 million
- 10 million allergic asthma
- Increase in the prevalence 75% from 1980-1994
- Children < 5 asthma rates increased >160% from 1980-1994
Asthma

Environmental Factors

Genetic polymorphism

Inter-individual variability
Air Pollution

- Ozone (\(O_3\))
- Particles
- Sulfur Dioxide (\(SO_2\)) sulfur
- Oxides of Nitrogen (\(NO_x\))
- Volatile Organic Compounds (VOCs)
The impact of particulate pollutants on asthma

- Cardiorespiratory morbidity and mortality
- Asthma flares
 1. Increased symptom score
 2. Requirement for more frequent medication
 3. Hospitalization
Particulate pollutants & allergic sensitization

- Children who live near motorways have increased incidence asthma
- In humans intranasal co-administration of Diesel exhaust particles (DEP) and neo-antigen (KHL) → primary sensitization and anti-KHL specific IgE in 9 of 15 atopic patients

J Allergy Clin Immunol 1999;1183-8
Murine Models

Particle exposure during antigen sensitization increases:

- Airway hyper-reactivity
- Airway inflammatory cells
- Number of goblet cells
- Antigen specific IgE levels
- Increase in pro-allergic T helper 2 cytokine profile (Th2) IL-5, IL4, IL-13
- Decrease in T helper 1 cytokine IFN-g
Particles

- Coarse 2.5–10 µm
- Fine ≤2.5 µm
- Ultrafine ≤0.1 µm
- Diesel Exhaust Particles (DEP) (composed of fine and ultrafine particles)
Particle Composition

*Organic Carbons: polycyclic aromatic hydrocarbons (PAH) and quinones

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Claremont (n = 3)</th>
<th>USC (n = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coarse</td>
<td>Fine</td>
</tr>
<tr>
<td>Mass concentration (µg/m³)</td>
<td>12.3</td>
<td>17.3</td>
</tr>
<tr>
<td>Organic carbon (%)</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>Elemental carbon (%)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Nitrate (%)</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>Sulfate (%)</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Metals/total elements (%)</td>
<td>51</td>
<td>13</td>
</tr>
</tbody>
</table>

Values represent the mean fractional composition (%) in which SEM varied < 10%.

Role of oxidative stress in the health effects of particulate pollutants

- Oxidative stress is a state of redox disequilibrium
- Decrease in the cellular glutathione (GSH)/glutathione disulfide (GSSG) ratio
- Activates a number of the redox-sensitive signaling cascades
- Responses that could be protective or injurious in nature
Oxidative stress promotes dendritic cell pro-allergic Th2 skewing

- DEP induced oxidative stress inhibits TH1 immunity in response to TLR agonist
- TH1 immunity restored with administration of antioxidant, N-acetylcysteine

Asthma

Environmental Factors

Genetic polymorphism

Inter-individual variability
IL4Rα polymorphism, Q576R

- Severe asthma
- Severe RSV bronchiolitis
- Rapid decline in lung function in smokers
- Heightened allergen sensitization in the context of maternal smoking
- 70% allele frequency in African Americans vs. 20% in Caucasians, 50% and 4% homozygosity, respectively
Q576R mutation promotes intense allergen-induced airway inflammation and remodeling

- Increased peribronchial and perivascular inflammation
- Increased goblet cell
- Increased bronchoalveolar lavage (BAL) fluid eosinophils
- Sub-epithelial cell fibrosis
- Augments IL-4R–dependent signaling

Specific Aim

- Study the impact of Q576R X Diesel exhaust particles (DEP) interaction on allergen induced airway disease.
- Hypothesis
 - DEP acts as an adjuvant to promote allergic airway sensitization
 - Q576R synergizes with DEP exposure to promote heightened allergic airway inflammation
In-vivo study design:

6-8 week old

WT

Q576R

Intranasal Sensitization
1. Saline
2. UFP
3. OVA
4. UFP+OVA

3 day 1% OVA aerosol challenge
Study Design

WT

Total IgE & OVA-IgE ELISA

Q576R

Bronchoalveolar lavage (BAL):
Total cell # & diff IL-4, IL-13, IL-6 IL-17A, INF-γ

Lung histochemical analysis, PAS staining
In-vitro studies

- DEP acts as an adjuvant to promote allergic airway sensitization
Mechanism of DEP associated allergic sensitization

- Oxidative stress
- Prelim data: Chatila lab performed gene microarray of DEP exposed human dendritic cells
- Increase in genes in the oxidative stress pathway
- Increase in Jagged1
Notch Th1 vs. Th2

Notch pathway and asthma

- May program cells toward proallergic Th2 vs Th1 pathways
- Jagged 1 or Jagged 2 + Notch 1 or 2 → Th2
- DLL1 or DLL4 + Notch3 → Th1
- Administration of Notch pathway inhibitor, Gamma Secretase Inhibitor (GSI) inhibits asthma features

Am J Respir Crit Care Med. 2009 May 15;179(10):875-82
In-vitro protocol

Murine bone-marrow

DEP X 24 hr: 2.5ug cm2 - 15ug cm2

Flow-cytometry
DC confirmation & protein expression

Quantitative PCR
gene expression
DC culture led to 60-70% DC purity

Dendritic cell Gate

Unstained sample

CD11c+
DC culture treatment with DEP results in up to 20X increase in Jagged 1 expression

(n=3, paired t-test, p=0.0056, 99% CI -27.73 to -4.00)
DC culture treatment with DEP results in 40% decrease in Notch 1 expression.

(n=3, paired t-test, p = 0.04, 95% CI 0.025 to 0.712)
DC culture treatment with DEP results in a reduction of DLL1

![Graph showing the reduction of DLL1 with DEP treatment.](image)

Legend:
- **Purple**: DLL1

Units ug/cm², n=3 per group

Treatment Group (n=3, Mann-Whitney test, p = 0.1)
No difference in Jagged 2 or Notch 2 gene expression
No difference in Notch 3 or Notch 4 gene expression
No difference in DLL4 or DLL3 gene expression
Flow results

Unstained Control

CD11c+ Gate
DEP treatment results in suppression of DLL1

Gate CD11c+

Red: DEP treated
Blue: Untreated
Purple: Negative Control

n=3
DEP treated group decreased
Notch 2

Gate CD11c+

Red: DEP treated
Blue: Untreated
Purple: Negative Control

n=3
No difference in Notch 3 and DLL4
Ongoing experiments

DEP txd + DO11 T cells

Tx OVA

Proliferation, CFSE

PCR: IL-2, IL-4, IL-13, IFN-gamma, GATA-3, T-bet
Summary

- Preliminary results suggest that a potential mechanism by which DEP promotes allergic sensitization TH2 DC programming via the Notch pathway
- Assess for differences in the Q576R mice
- Confirm these results in-vivo
References

References

References

2. Raffi Tachdjian1, Clinton Mathias3, Shadi Al Khatib1, Paul J. Bryce3, Hong S. Kim1, Frank Blaeser4, Brian D. O’Connor2, Danuta Rzymkiewicz1, Andrew Chen1, Michael J. Holtzman5, Gurjit K. Hershey6, Holger Garn7, Hani Harb7, Harald Renz7, Hans C. Oettgen3, and Talal A. Chatila1 Pathogenicity of a disease-associated human IL-4 receptor allele in experimental asthma. J Exp Med. 2009 Sep 28;206(10):2191-204.

4. Carine Delayre-Ortheza, Julien Beckera, Frédéric de Blaya, b, Nelly Frossard, Françoise Ponsa. Exposure to Endotoxins during Sensitization Prevents Further Endotoxin-Induced Exacerbation of Airway Inflammation in a Mouse Model of Allergic Asthma. *Int Arch Allergy Immunol* 2005;138:298-304
References