K30 Research Update

Transplant Immunomodulation by Allochimeric Molecules

Sherilyn A Gordon M.D.
December 20, 2006
Background-Transplant-Related Morbidity and Mortality

- Technical Expertise
- Perioperative care
- Immunoprophylaxis
- Complications
 - infection
 - rejection
Increasing Demand for Organs

- **Waiting List**: 15 fold increase
- **Transplants**: 2.4 fold increase
- **Donors**: 2.4 fold increase
- **Deaths**: 5 fold increase

www.unos.org
Background

Effect of HLA Matching on Renal Allograft Survival

![Graph showing percent graft survival over years posttransplant for different HLA matching categories.](image)
Antigenic Topography of Class I Molecules

Background

1. accelerated allograft rejection
2. alloantibody production
3. increase fTc

dominant immunogenic epitopes
RT1.A^a, RT1.A^u, RT1.A^l
Rat Major Histocompatibility Complex

RT1

\[\text{RT1.A}^a \]

<table>
<thead>
<tr>
<th>(\alpha_1^a)</th>
<th>(\alpha_2^a)</th>
<th>(\alpha_3)</th>
<th>TM</th>
<th>CYT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
<td>182</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Background
Background

Allochimeric Class I MHC Molecules
Experimental Tolerance Model

Chimeric Alloantigen

ACI (RT1.A^a)

LEW (RT1.A^l)
or
WF (RT1.A^u)

1mg / p. v.

CsA
orally
3 days (0-2)
10mg/kg
Preliminary Data

Long-Term Survival of WF Allografts Induced by Perioperative Allochimeric Administration

- WF \rightarrow ACI
- WF \rightarrow ACI CsA only
- WF \rightarrow ACI + $\alpha_{1h}^{u/l}$-RT1.Aa + CsA

Days

% graft survival
Long-term Survival of LEW Allografts Induced by Allochimeric Molecule

Preliminary Data

Days

% graft survival

LEW → ACI
LEW → ACI CsA only
LEW → ACI + α_{1h}^{u/l}-RT1.A^{a} + CsA
Preliminary Data

Tolerance Induction by Allochimeric Molecules

Accepted donor-type allograft

Rejected third-party allograft
<table>
<thead>
<tr>
<th>DAY 120</th>
<th>SYNGENEIC</th>
<th>ALLOCHIMERIC PROTEIN</th>
<th>CsA High Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>H&E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Islet Donor</td>
<td>Recipient</td>
<td>CsA</td>
<td>$[\alpha_{1h}^{1/u}]$-RT1.A<sup>a</sup></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>WF</td>
<td>ACI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WF</td>
<td>ACI</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>WF</td>
<td>ACI</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>WF</td>
<td>ACI</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>LEW</td>
<td>ACI</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>LEW</td>
<td>ACI</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>LEW</td>
<td>ACI</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Proposal

Specific Aim I
- To document the induction of tolerance to pancreatic islets by allochimeric molecules

Hypothesis: Rat allochimeric molecules induce tolerance to islet allografts in allogeneic hosts
Specific Aim II

- To dissect the mechanisms of tolerance induction by allochimeric molecules

Hypothesis: Regulatory T cells that are critical for tolerance acquisition can transfer the tolerant state to naïve recipients in an “infectious” manner
 - Determine the contribution of distinct cytokine networks
 - Determine the role of T Cell anergy
Proposal

Specific Aim III

• To further determine sites of amino acids that are critical for tolerance induction

Hypothesis: Allochimeric determinants, that are critical for tolerance induction, are located on the polymorphic regions of class I MHC molecules
Translation to Clinic

• IRB
• Timing of pre-transplant treatment regimen
• Sensitivity of indicators of tolerance
 • Graft survival
 • Freedom from rejection
 • Donor-specific antibodies
Acknowledgments

• R. Mark Ghobrial, M.D., Ph.D. (Lead Mentor)
• Ronald W. Busuttil, M.D., Ph.D.
• Curtis Holt, Pharm.D.
• XD Chen, Ph.D.
• F Gao, Ph.D.