Why Does Place Matter? Community-level Analysis and CER in Understanding Chronic Disease Disparities

Arleen F. Brown, MD, PhD
UCLA Division of GIM & HSR

Comparative Effectiveness Research
CTSI Clinical Research Development Seminars
January 22, 2013
I have not conflicts of interest to disclose.
Session Objectives

- Rationale and conceptual framework for studying neighborhoods and health
- Review evidence on neighborhood characteristics and cardiometabolic disease
 - CVD/Obesity
 - Diabetes
 - Stroke risk and outcomes
- What to consider in evaluating an analysis of neighborhoods and health
- Sample listing of databases that have geocoded data
Rationale for Studying Neighborhoods and Health
A map of cholera deaths in London, 1840s

A contaminated water pump in Broad Street proved to be the source for the spread of cholera (Drawn by Dr John Snow about 1854)
Age-adjusted Percentage of U.S. Adults Who Were Obese or who had Diagnosed Diabetes

Obesity (BMI ≥30 kg/m²)

1994

2000

2008

Cardiometabolic Disease: The Individual Context

- Traditional focus on individual-level behavioral and biological risk factors
- Management also viewed as related to individual choice and medical care
- Resulting Prevention/Treatment strategies:
 - Health education to enhance awareness and motivate individuals to change habits
 - Early detection of risk factors
 - Treatment with medications, established clinical strategies
CVD: the Neighborhood Context

Emerging interest in and evidence on the association between neighborhood context and CVD driven by:

- Epidemiologic studies suggest important geographic variation in obesity and other cardiometabolic disease
- “Obesity epidemic”: role of environmental factors
- Rapid advances and interdisciplinary work in:
 - Geography (Geographic Information Systems)
 - Public health
 - Sociology
 - Urban planning
 - Biostatistical methods to disentangle individual from neighborhood-level effects (e.g. multilevel models)
What is a Neighborhood?

- Geographic area that captures **exposures**
 - Social environments
 - e.g. concentrated wealth or poverty, segregation, social norms, safety
 - Physical / Built environments
 - e.g. parks, sidewalks, toxins
 - Resource environments
 - e.g. educational opportunity, healthy food stores, health care facilities
Neighborhood Environment

- Resource Environment
 - Available goods and services (e.g. access to healthy foods, places to exercise, transportation)
 - Educational and employment opportunities

- Socioeconomic Environment
 - Concentrated poverty or wealth
 - Physical safety
 - Norms and values
 - Social relationships
 - Residential segregation

- Physical Environment
 - Environmental hazards
 - Housing quality
 - Severe weather patterns
Why Might Neighborhood Exposures Matter for Chronic Disease Disparities?

- Separation of poorer persons and racial/ethnic minority groups into disadvantaged communities may play a role in chronic disease disparities.
- Residence in a disadvantaged neighborhood:
 - Fewer educational and employment opportunities
 - Fewer and lower quality clinical resources
 - More barriers to engagement in self care and manage medication, dietary, and exercise regimens
- Certain groups may be particularly vulnerable to deleterious neighborhood influences or may obtain greater benefit from neighborhood resources:
 - Children and Adolescents
 - Oldest residents
Neighborhood Disadvantage and CVD Incidence and Outcomes

Adapted from Diez Roux, 2003
What to Consider in Evaluating an Analysis of Neighborhoods and Health

- Is the study hypothesis driven? Are the mechanisms plausible?
- How is neighborhood defined?
 - Aggregate versus individual census measures
 - Spatial/Physical characteristics (e.g. # of parks; walkability measured by alpha/gamma indices; etc.) – observed (insider/outsider) versus
 - Is the spatial scale appropriate (e.g. MSAs for clinical or segregation characteristics)
- Is the dependent variable appropriately measured?
- Cumulative and Lagged effects
 - Cross-sectional (common) vs. longitudinal vs. expt’l (rare)
 - Data on neighborhood change / participant mobility
- Causal inference
 - Propensity scores / Instrumental variables
Why Conduct Research to Analyze the Relationship between Neighborhoods and Chronic Conditions?

- Understand **mechanisms**
- Understand **interplay** between exposures
- Identify **policy and community** strategies to prevent and treat diabetes and improve health outcomes
- **Superimposed on** more traditional individual level risk factor modification (e.g. medications, clinical care, behavior change)
Neighborhood Socioeconomic Status and CHD Incidence

SETTING: Atherosclerotic Risk in Communities (ARIC)
- 15,792 Whites and African Americans, 45-64 y.o. in 1987-89
- Forsyth County, NC; Jackson, MS; Minneapolis MN; Washington County, MD

DESIGN: Multilevel analyses of prospective data (mean 9 yrs f/u)
- Neighborhood socioeconomic status (NSES) score:
 - Residential address linked to 1990 US Census block data
 - Constructed proxies for wealth/income, education, occupation
- Coronary Heart Disease (CHD) events: Surveys + Hospital discharge data + Death certificates + Coroner/autopsy reports
- Adjusted for individual SES (income, education, occupation), other demographic and clinical characteristics

Neighborhood Socioeconomic Status (NSES)

<table>
<thead>
<tr>
<th>Construct</th>
<th>Census Tract Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>• Median household income</td>
</tr>
<tr>
<td>Wealth</td>
<td>• Median value of housing units</td>
</tr>
<tr>
<td></td>
<td>• % Households with interest, dividend, or rental income</td>
</tr>
<tr>
<td>Education</td>
<td>• % Residents >25 with high school degree</td>
</tr>
<tr>
<td></td>
<td>• % Residents >25 with college degree</td>
</tr>
<tr>
<td>Employment</td>
<td>• % Residents in executive, managerial, professional specialty occupation</td>
</tr>
</tbody>
</table>
Neighborhood Socioeconomic Status and CHD Incidence

RESULTS: 615 coronary events in 13,009 participants
- Residents of disadvantaged neighborhoods had higher adjusted risk of disease than residents of advantaged neighborhoods

<table>
<thead>
<tr>
<th>Race</th>
<th>Neighborhood SES</th>
<th>Hazard Ratios (95% CI) for fully adjusted model</th>
</tr>
</thead>
<tbody>
<tr>
<td>White:</td>
<td>1 (Low)</td>
<td>1.6 1.1, 2.2)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.5 (1.1, 2.0)</td>
</tr>
<tr>
<td></td>
<td>3 (High) – Reference</td>
<td>1.0</td>
</tr>
<tr>
<td>A-A</td>
<td>1 (Low)</td>
<td>1.5 (1.0-2.3)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.5 (1.0-2.4)</td>
</tr>
<tr>
<td></td>
<td>3 (High) – Reference</td>
<td>1.0</td>
</tr>
</tbody>
</table>

CONCLUSIONS: Living in a disadvantaged neighborhood is associated with increased incidence of coronary heart disease

Diez Roux, NEJM, 2001
Neighborhoods and Heart Disease

- Low neighborhood socioeconomic status associated with heart disease:
 - Higher rates / poorer control of cardiovascular risk factors (e.g. hypertension, diabetes)
 - More unhealthy behaviors (smoking, sedentary lifestyle) that increase CHD incidence
 - Higher incident coronary heart disease (CHD)
 - Higher cardiovascular and all-cause mortality
Conceptual Framework: Neighborhood Exposures and CVD/Stroke?

Neighborhood Risk Factors
- **Socioeconomic Environment**
 - Neighborhood SES
 - Racial isolation
 - Residential stability
- **Physical Environment**
 - Food resources
 - Walkability / street design
 - Housing quality/ type/density
 - Disorganization

Individual Risk Factors
- **Biologic Risk Factors**
 - Hypertension
 - Diabetes
 - Atrial fibrillation
 - Subclinical CVD
 - Cholesterol
- **Behaviors**
 - Smoking
 - Alcohol use
 - Physical activity
 - Diet
- **Indicators**
 - Age, gender, race
 - Education / Income
- **Medical Care**
 - Access to care
 - Quality of care

Psychosocial Factors
- Depression
- Social support
- Social networks

Physiologic Response
- Traditional and novel biomarkers

Incident stroke
Post-stroke outcomes (e.g., Mortality)
Analyses

- Stratified by Race
- Multivariate Models
 - Multilevel Models
 - Individual level characteristics
 - Neighborhood level characteristics
 - Multilevel Cox Proportional Hazard ("Frailty") models to examine time to an event (e.g. stroke, death)
- Mediation Analyses
 - Behavioral risk factors
 - Biological risk factors
 - Psychosocial risk factors
NSES: Overall vs. Race-specific quartile ranges
Little overlap between Whites and African Americans
Incident Ischemic Stroke, Whites Hazard Ratio \((P) \)

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted</th>
<th>Model 1 (Age, sex, income, education)</th>
<th>Model 2 (Model 1+ behavioral(^1))</th>
<th>Model 3 (Model 1+ biologic(^2))</th>
<th>Model 4 (Model 1 + behavioral + biologic (^{1,2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whites (N=3834)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood SES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Q1 (Highest)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>• Q2</td>
<td>1.34 (0.02)</td>
<td>1.27 (0.07)</td>
<td>1.27 (0.07)</td>
<td>1.21 (0.15)</td>
<td>1.21 (0.14)</td>
</tr>
<tr>
<td>• Q3</td>
<td>1.43 (0.005)</td>
<td>1.27 (0.07)</td>
<td>1.26 (0.08)</td>
<td>1.17 (0.24)</td>
<td>1.16 (0.26)</td>
</tr>
<tr>
<td>• Q4 (Lowest)</td>
<td>1.56 (0.0004)</td>
<td>1.32 (0.04)</td>
<td>1.30 (0.06)</td>
<td>1.16 (0.29)</td>
<td>1.15 (0.32)</td>
</tr>
</tbody>
</table>

\(^1\)Behavioral Risk Factors – smoking, alcohol use, and diet;

\(^2\)Biologic Risk Factors – EKG abnormalities, subclinical cardiovascular disease, hypertension, diabetes, LDL-c

Brown et al., *Stroke*, 2011
Incident Ischemic Stroke, Whites and Blacks Hazard Ratio (P)

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted</th>
<th>Model 1 (Age, sex, income, education)</th>
<th>Model 2 (Model 1 + behavioral(^1))</th>
<th>Model 3 (Model 1 + biologic(^2))</th>
<th>Model 4 (Model 1 + behavioral(^1) + biologic(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whites (N=3834)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood SES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Q1 (Highest)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>• Q2</td>
<td>1.34 (0.02)</td>
<td>1.27 (0.07)</td>
<td>1.27 (0.07)</td>
<td>1.21 (0.15)</td>
<td>1.21 (0.14)</td>
</tr>
<tr>
<td>• Q3</td>
<td>1.43 (0.005)</td>
<td>1.27 (0.07)</td>
<td>1.26 (0.08)</td>
<td>1.17 (0.24)</td>
<td>1.16 (0.26)</td>
</tr>
<tr>
<td>• Q4 (Lowest)</td>
<td>1.56 (0.0004)</td>
<td>1.32 (0.04)</td>
<td>1.30 (0.06)</td>
<td>1.16 (0.29)</td>
<td>1.15 (0.32)</td>
</tr>
</tbody>
</table>

African Americans					
(N=785)					
Neighborhood SES					
• Q1 (Highest)	1.00	1.00	1.00	1.00	1.00
• Q2	0.74 (0.26)	0.67 (0.15)	0.66 (0.13)	0.75 (0.33)	0.74 (0.31)
• Q3	0.84 (0.51)	0.70 (0.17)	0.63 (0.09)	0.75 (0.31)	0.68 (0.19)
• Q4 (Lowest)	0.71 (0.24)	0.60 (0.08)	0.59 (0.09)	0.72 (0.28)	0.72 (0.30)

\(^1\)Behavioral Risk Factors – smoking, alcohol use, and diet; \(^2\)Biologic Risk Factors – EKG abnormalities, subclinical cardiovascular disease, hypertension, diabetes, LDL cholesterol

Brown et al., *Stroke*, 2011
Conceptual Framework:
Neighborhood Exposures and CVD/Stroke?

Neighborhood Risk Factors
- Socioeconomic Environment
 - Neighborhood SES
 - Racial isolation
 - Residential stability
- Physical Environment
 - Food resources
 - Walkability / street design
 - Housing quality / type / density
 - Disorganization

Individual Risk Factors
- Biologic Risk Factors
 - Hypertension
 - Diabetes
 - Atrial fibrillation
 - Subclinical CVD
 - Cholesterol
- Behaviors
 - Smoking
 - Alcohol use
 - Physical activity
 - Diet
- Individual Characteristics
 - Age, gender, race
 - Education / Income

Psychosocial Factors
- Depression
- Social support
- Social networks

Physiologic Response
- Traditional and novel biomarkers

Incident stroke
Post-stroke outcomes (e.g., Mortality)
Figure 1: Kaplan-Meier curves of death after incident stroke in 806 CHS participants at (a) 30 days and (b) 1 year post stroke event.
NSES and Post-stroke Mortality at 1 Year*

<table>
<thead>
<tr>
<th></th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighborhood SES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Q1 (Highest)</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>• Q2</td>
<td>1.10 (0.76, 1.60)</td>
<td>0.61</td>
</tr>
<tr>
<td>• Q3</td>
<td>1.43 (0.99, 2.08)</td>
<td>0.06</td>
</tr>
<tr>
<td>• Q4 (Lowest)</td>
<td>1.77 (1.17, 2.68)</td>
<td>0.007</td>
</tr>
<tr>
<td>Stroke Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ischemic Stroke (ref)</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>• Hemorrhagic Stroke</td>
<td>4.11 (2.98, 5.68)</td>
<td><0.0001</td>
</tr>
<tr>
<td>• Unknown Stroke Type</td>
<td>2.67 (1.77, 4.03)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Age (5 year intervals)</td>
<td>1.30 (1.15, 1.46)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.41 (1.03, 1.92)</td>
<td>0.03</td>
</tr>
<tr>
<td>Total/HDL ratio</td>
<td>0.62 (0.41, 0.96)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Models are also adjusted for demographics, smoking, alcohol use, diabetes, atrial fibrillation, TIA, subclinical cardiovascular disease, and interaction between NSES and race.

Brown, *Neurology*, 2013
Can Environments be Considered “Obesogenic” or “Diabetogenic”?

Getty Images – Los Angeles July 24th 2008
Neighborhoods and Diabetes Precursors
Neighborhoods and Diabetes Prevalence
Neighborhoods and Diabetes Prevalence “Designed for Disease”

SETTING: 2005 California Health Interview Survey (CHIS)
DESIGN: Analysis of food environment and diabetes prevalence
 - Retail Food Environment Index (RFEI): ratio of fast-food stores & convenience stores to grocery stores & produce vendors
RESULTS: Residents of communities with highest RFEIs had a 21% higher prevalence of diabetes

Babey, California Center for Public Health Advocacy, April 2008, http://www.publichealthadvocacy.org/designedfordisease.html
Built Environment and Obesity in Disadvantaged Populations

- Systematic review of influence of built environment characteristics on obesity among minorities and socioeconomically disadvantaged persons

- Obesity associated with:
 - Food environment (fewer supermarkets vs. smaller stores or convenience stores)
 - Lack of places to exercise
 - Lack of safety (crime / traffic)
 - Poorer aesthetics, more physical disorder

Lovasi et al., 2009
Neighborhoods and Diabetes Incidence
Physical Activity and Food Resources and Incidence of Type 2 Diabetes

SETTING:
- Multi-Ethnic Study of Atherosclerosis (MESA)
- Population-based survey on neighborhood resources for physical activity (PA) / healthy eating

RESULTS:
- Among 2285 adults, observed 233 new type 2 diabetes cases over 5 years follow-up
- Better neighborhood resources (90TH vs. 10th percentile):
 - Adj. HR=0.62 (95% confidence interval: 0.43-0.88)
 - 38% lower incidence of type 2 diabetes

Strategies for addressing neighborhood contributions to diabetes risk and outcomes
Moving to Opportunity and Tranquility (MTO): A Randomized Social Experiment of Neighborhoods and Diabetes

BACKGROUND:

- Hypothesized from the observational data that neighborhood characteristics might influence health
 - Built environment, health care providers, safety, social norms may all contribute to prevention and management of chronic conditions
- Housing and Urban Development (HUD) demonstration project to understand the social and health outcomes on families of leaving poverty areas.
- “Poverty area” is proxy for large number of neighborhood attributes

Ludwig et al., NEJM, 2012
Moving to Opportunity and Tranquility (MTO): A Randomized Social Experiment of Neighborhoods and Diabetes

SETTING: Randomized housing mobility experiment
- Residents of public housing projects (>40% poverty) in 5 cities (Baltimore, Boston, Chicago, Los Angeles, New York City)

INTERVENTION:
- 3 Conditions:
 - Experimental - voucher only valid in low poverty areas
 - Section 8 - voucher without geographic restriction
 - Control - No vouchers
- >12-year follow-up of 4498 families
- 85% African American or Latina women with children

RESULTS: Experimental group:
- less likely to reside in high poverty areas
- had 13% lower rate of obesity (BMI>35)
- had 22% lower rate of diabetes

Ludwig et al., NEJM, 2012
Moving to Opportunity and Tranquility (MTO)

SETTING:
- Residents of public housing projects (>40% poverty) in 5 cities (Baltimore, Boston, Chicago, Los Angeles, New York City)

INTERVENTION:
- Randomization to one of three conditions:
 - Experimental - voucher only valid in low (<10%) poverty areas in 1990 + short term counseling on housing search
 - Section 8 - voucher without geographic restriction
 - Control - No vouchers
- >12-year follow-up of 4498 families
- 85% African American or Latina women with children

Ludwig et al., *NEJM*, 2012
Moving to Opportunity and Tranquility (MTO)

MEASUREMENTS AND ANALYSES:

- Baseline (1994-1998) and follow up (2008-2010) surveys
- One adult from each family that received low-poverty vouchers and the control group and a randomly selected two thirds of the families in the Section 8 group.
- BMI assessed by measured height and weight
- Diabetes assessed with blood spot analysis to measure A1c

Ludwig et al., NEJM, 2012
Moving to Opportunity and Tranquility (MTO)

RESULTS:

- At 10-15 years follow up, the Experimental group:
 - less likely than the control group to reside in high poverty areas (though this difference decreased over time)
 - had 13% lower rate of obesity (BMI>35) – 31.1% vs. 35.5%
 - had 22% lower rate of diabetes (A1c>6.5) – 14.4% vs. 17.7%

- Possible mechanisms:
 - Higher reported collective efficacy
 - Higher rates of feeling safe
 - Higher rates of having a friend who graduated from college
 - No difference in access to local health care services

Ludwig et al., *NEJM*, 2012
LIMITATIONS:
- Volunteers to study may not have been representative of populations of these cities
- Loss to follow up
- A1c measurement – did not include those with diabetes who may have been successfully treated
- Limited health information at baseline

CONCLUSIONS
- Clinical, public health, and policy implications for obesity and diabetes prevention and potentially management

CONCERN
- What about people who did not / could not leave the high poverty neighborhoods

Ludwig et al., NEJM, 2012
Community Interventions to Improve Diabetes Outcomes on the South Side of Chicago

- Accountable care organizations (ACOs) responsible for broad health outcomes and costs for a defined population
- Example: Community collaboration to improve diabetes outcomes on Chicago’s South Side
 - Quality improvement collaborative: Improve diabetes care in 6 health centers (4 FQHCs)
 - Patient activation: Culturally-tailored patient education
 - Provider communication training
 - Community partnerships that support self-care at home
 - Patient advocate outreach workers
 - Partnerships with organizations/businesses
 - Radio / TV education campaign

Peek et al., 2012
What to Consider in Evaluating an Analysis of Neighborhoods and Health

- Is the study hypothesis driven? Are the mechanisms plausible?
- How is neighborhood defined?
 - Aggregate versus individual census measures
 - Spatial/Physical characteristics (e.g. # of parks; walkability measured by alpha/gamma indices; etc.) – observed (insider/outsider) versus
- Is the spatial scale appropriate (e.g. MSAs for clinical or segregation characteristics)
- Is the dependent variable appropriately measured?
- Cumulative and Lagged effects
 - Cross-sectional (common) vs. longitudinal vs. expt’l (rare)
 - Data on neighborhood change / participant mobility
- Causal inference
 - Propensity scores / Instrumental variables
Datasets with Geocoded Elements

- Atherosclerotic Risk in Communities (ARIC)
- California Health Interview Study (CHIS)
- Cardiovascular Health Study (CHS)
- Hispanic Community Health Study- Study of Latinos (HCHS- SOL)
- Jackson Heart Study (JHS)
- Look AHEAD (Action for Health in Diabetes)
- MultiEthnic Study of Atherosclerosis (MESA)
- National Health and Nutrition Examination Study (NHANES)
- Translating Research into Action for Diabetes (TRIAD)
- Some VA data
- Geocoding your own data
References

Thank You!