Cost-Effectiveness Analysis: Basic Models and Measuring Costs

Gerald F. Kominski, Ph.D.
Professor, Department of Health Policy and Management
Director, UCLA Center for Health Policy Research
UCLA Fielding School of Public Health

March 28, 2013
Cost Effectiveness Ratio

\[
\text{CE ratio } = \frac{\Delta \text{ Costs}}{\Delta \text{ Health Outcomes}}
\]
CE Ratios

■ Average CE
 - measures the total cost divided by the total benefit of a program or intervention, relative to no intervention

■ Incremental CE
 - compares the relative effect of multiple programs or interventions
 - assumes sequential implementation of multiple programs

■ Marginal CE
 - measures the effect of expanding an existing program or intervention
 • this type of CEA is rarely performed
CE Ratios: Decision Rules

<table>
<thead>
<tr>
<th>Outcomes (H)</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE < 0 and $\Delta H < 0 \Rightarrow$ do not adopt</td>
<td>CE > 0 and $\Delta H > 0 \Rightarrow$ adopt if $< CE(max)$ => “cost effective”</td>
</tr>
<tr>
<td>CE > 0 and $\Delta H < 0 \Rightarrow$ adopt only if savings is worth health cost</td>
<td>CE < 0 and $\Delta H > 0 \Rightarrow$ adopt => “cost saving”</td>
</tr>
</tbody>
</table>
CE of Preventive Treatment

\[\Delta C = p_1 \cdot C(1) + p_2 \cdot C(2) + p_3 \cdot C(3) + p_4 \cdot C(4) - p_5 \cdot C(5) - p_6 \cdot C(6) \]

\[\Delta H = p_1 \cdot H(1) + p_2 \cdot H(2) + p_3 \cdot H(3) + p_4 \cdot H(4) - p_5 \cdot H(5) - p_6 \cdot H(6) \]

\[\text{ICER} = \frac{\Delta C}{\Delta H} \]
CE of Preventive Treatment

\[
\sum_{i=1}^{\text{post outcomes}} p_i \overline{C}(\text{post})_i - \sum_{j=1}^{\text{pre outcomes}} p_j \overline{C}(\text{pre})_j
\]

\[
\sum_{i=1}^{\text{post outcomes}} p_i \overline{H}(\text{post})_i - \sum_{j=1}^{\text{pre outcomes}} p_j \overline{H}(\text{pre})_j
\]

where \(i\) and \(j\) represent the full range of outcomes in a decision tree.
CE of a New Diagnostic Test

A decision tree demonstrating the outcomes of a new diagnostic test compared to an old test. The diagram shows the probabilities associated with each outcome:

- **Positive result**:
 - True positive (p1) with outcomes (C[1]) / (H[1])
 - False positive (p2) with outcomes (C[2]) / (H[2])

- **Negative result**:
 - True negative (p3) with outcomes (C[3]) / (H[3])
 - False negative (p4) with outcomes (C[4]) / (H[4])

- **Positive result** (old test):
 - True positive (p5) with outcomes (C[5]) / (H[5])
 - False positive (p6) with outcomes (C[6]) / (H[6])

- **Negative result** (old test):
 - True negative (p7) with outcomes (C[7]) / (H[7])
 - False negative (p8) with outcomes (C[8]) / (H[8])
CE of a New Diagnostic Test

\[
\begin{align*}
&\sum_{i=1}^{\text{new outcomes}} p_i C(\text{newDx})_i - \sum_{j=1}^{\text{old outcomes}} p_j C(\text{oldDx})_j \\
\sum_{i=1}^{\text{new outcomes}} p_i H(\text{newDx})_i - \sum_{j=1}^{\text{old outcome}} p_j H(\text{oldDx})_j
\end{align*}
\]

where \(i \) and \(j \) represent the full range of outcomes in a decision tree
CE of a New Treatment
CE of New Treatment

\[
\begin{align*}
\text{new outcomes} & \quad \sum_{i=1}^{\text{new outcomes}} p_i \bar{C}(newRx)_i - \sum_{j=1}^{\text{old outcomes}} p_j \bar{C}(oldRx)_j \\
\text{old outcomes} & \quad \sum_{i=1}^{\text{new outcomes}} p_i \bar{H}(newRx)_i - \sum_{j=1}^{\text{old outcomes}} p_j \bar{H}(oldRx)_j
\end{align*}
\]

where \(i \) and \(j \) represent the full range of outcomes in a decision tree.
BREAK

QUESTIONS ?
Measuring Costs
Cost Categories

- Medical costs
 - Hospital costs
 - Other institutional costs, including nursing home, rehabilitation, etc.
 - Ambulatory costs, including physicians, home health services, etc.
 - Pharmaceuticals

- Social costs
 - Costs borne by patients and their families, including lost income, travel costs, etc.
 - Costs borne by society, such as criminal justice system costs
Measuring Costs
Types of Costs

- **Fixed vs. variable costs**
 - Fixed costs are considered “sunk,” and thus can be excluded
 - In practice, it is often difficult/impossible to measure only variable costs
 - Thus average costs are most often used

- **Joint products**
 - May be difficult to separate joint production costs

- **Time horizon**
 - Should be long enough to capture relevant health benefits
Identifying and Measuring Costs

- **Identify resources used**
 - Requires a careful specification of all relevant resources used in the intervention or treatment being assessed

- **Measure resources used**
 - Requires data collection or abstraction tools, developed to collect the information identified in the previous step
 - In some cases, may be available from administrative data

- **Place a monetary value on resources used**
Micro versus Gross Costing

- **Gross costing**
 - Uses readily available sources of data about either the cost of production, or more commonly, the price paid for services
 - Requires collection of aggregate utilization data, which is then priced using standard reimbursement or payment rates
 - Data are easier to collect, but refined analyses of changes in resource use aren’t possible

- **Micro costing**
 - Requires collection of detailed utilization data, usually with instruments developed specifically for an individual study
 - Usually requires collection of detailed cost or pricing data
 - Costs may lack external validity
Measuring Costs

- Pharmaceuticals
 - acquisition costs
 - costs of administering, monitoring, compliance

- Hospitals
 - time and motion studies may be necessary to obtain accurate measure of resources used in treatment
 - costs are often estimated from charges using the ratio of costs-to-charges (RCC)
 - public payment rates, such as Medicare DRG rates, can be used if we assume that marginal revenue for public payers (roughly) equals marginal costs
Measuring Costs

- Physicians
 - cost data are usually difficult to obtain
 - payment data, such as Medicare payment rates based on the Resource-Based Relative Value Scale, again may be used assuming that marginal revenue roughly equals marginal cost
Measuring Costs

- **Personal/Family Costs**
 - Often ignored, because in CUA, costs of lost productivity or functional status are already included in outcome measure (i.e., QALY)
 - Depending on the intervention, may be important
 - Caregiver costs
 - Travel costs
 - Time in treatment

- **Social Costs**
 - Missed school
 - Criminal justice system
 - Environmental effects
Measuring Costs

- Induced costs, i.e., costs of added years of life
 - may have a large impact on programs with low CE ratios
 - Panel on Cost-Effectiveness in Health and Medicine suggests ignoring these costs, unless they are likely to have a large impact
QUESTIONS ?